Design of the MIPS Processor (contd)

First, revisit the datapath for add, sub, lw, sw.
We will augment it to accommodate the beq

and j instructions.

Execution of branch instructions

beq $at, $zero, L

add $v1, $v0, $zero
add $v1, $vi, $vi
j somewhere

L: add $v1, $v0, $vO

000100 | 00001 00000 0000 0000 0000 0011
op rs rt address

Offset= 3x4=12
The offset must be added to the next PC to

generate the target address for branch.

The modified version of MIPS

We need a second adder, since the ALU
is already doing subtraction for the beq.

= PCSrc=1 branches

" 0
3 M to PC+4+(offsetx4)
Add ¢ u * PCSrc=0 continues
PC 4 .
Multiply constant ’ to PC+4.
by 4 to get offset.
PCSrc
RegWrite
i MemToR
Read Instruction 1[25-21] Road | Mem\Write emToReg
address [31-0] % ea Read . |
register 1 data 1 > ALD [Road —
1[20- 16] >
Instruction » Read , cea > Zero address data
memory register data 2 RESUI || Write
Write / address
register) | \Write Data
Wite egisters ALUOp data Memory
data [
MemRead
REQDST ALUSrc
1[15-0] Sign

=®

The final datapath for single cycle MIPS. Find

out which paths the signal follow for lw, sw,

add and beq instructions

Executing R-type instructions

PC

-

Read Instruction
address [31-0]

Instruction
memory

Add
4
RegWrite
125 - 21 |
& [] » Read Read
register 1 data 1
1[20 - 16]
[] Read
0 register 2 Read
data 2
M Write
u register
X Registers
1{15- 11 Wiite
1 data
I
RegDst
1[15-0] N Sign

—

- =g o

ALUSrc

ALU

> Zero
Result

MemWrite

ALUOp |

v

Read Read
address data

Write
address

Write mgiﬁ
data v

MemRead

’w

MemToReg

l:::: e s —

The ALUop will be determined by the value of the

opcode field and the function field of the instruction

word

Executing LW instruction

PC

Read Instruction
address [31-0]

Instruction
memory

k

> Zero
Result

MemWrite

ALUOp

L

Read Read Ll 4 |

address data i

Write u

address X
0

Write mE;t:

data b

MemRead

Add
4
RegWrite
1 [25 - 21] Read Read
register 1 data 1
Read
register 2 Read | 0
data 2 M
Write
register :
Registers
Write =il 1)
data I
RegDst ALUSrc
1[15- 0] _| Sign

w

MemToReg

Executing beq instruction

The branch may
or may not be

L 3

Zero

> Result

ALUOp

output

MemWrite

k2

Read
address

Read
data

Write
address

Data
memory

Write
data

MemRead

Add
PC -
RegWrite:
Read Instruction 125 - 21] Read
address [31-0] [% : Read
register 1 data 1
.I[20-16] Read
Instruction 1
memory register 2 Read |mgyegetil 0 |
data 2
Write -
register i
Registers
Wirite 1
data
RegDst ALUSrc
1[15-0] Sign

-

w

taken, depending
on the ALU’s Zero

MemToReg

o xS g -

Control signal table

This table summarizes what control signals are

needed to execute an instruction. The set of

control signals vary from one instruction to

another.

Operation | RegDst | RegWrite | ALUSrc | ALUOp | MemWrite | MemRead | MemToReg
add 1 1 0 010 0 0 0
sub 1 1 0 110 0 0 0
and 1 1 0 000 0 0 0
or 1 1 0 001 0 0 0
slt 1 1 0 111 0 0 0
lw 0 1 1 010 0 1 1
SW X 0 1 010 1 0 X
beq X 0 0 110 0 0 X

How to implement the control unit?

The Control Unit

I[31-26, 15-0]

Instruction
Memory

>

Control

ALUsrc
MemRead

p MemWrite

» Regwrite

All control signals are not shown here

1-cycle implementation is not used

Why? Because the length of the clock cycle will
always be determined by the slowest operation
(lw, sw) even when the data memory is not
used. Practical implementations use multiple
cycles per instruction, which fixes some

shortcomings of the 1-cycle implementation.

Faster instructions are not held back by the slower
instructions

The clock cycle time can be decreased.

Eventually simplifies the implementation of

pipelining, the universal speed-up technique

This requires some changes in the datapath

Multi-cycle implementation of MIPS

First, revisit the 1-cycle version

We need a second adder, since the ALU
is already doing subtraction for the beq.

.

Read Instruction
address [31-0]

Instruction
memory

Add
4 Multiply constant
by 4 to get offset.
Reg\Write
1[25- 21] Read Read
register 1 data 1
1[20 - 18]
Read
0 register 2 Read
i data 2
M Wirite
u register
115 - 11]] X Write Registers
1 data
RegDst
1[15-0] @

ALUSre

» PCSrc=1 branches
to PC+4+(offsetx4)

» PCSrc=0 continues
to PC+4,

— |

MemWrite

Read Read

MemToReg

| V\TitE

address data

address

» 'Write Data

memory

MemRead

data

=®

The multi-cycle version

PC\Write
PC ALUSrcA
lorD MemRead J\
| e
RegDst RegWrite M
0 }pd Address | u \J
M »| Read Read ~ X = ALU
u Mamnr}, I‘EglstEr 1 data 1 L \.‘lj > Zero
x
» Read
- i Result
! Write Mem 0 register 2 dlztaeég 0
s data Data M Write 4 1 —
| : register) ALUOp
MemWrite Write]
Registers
pd 1 data gl 3
0 ALUSrcB
M
u
X
1
i
MemToReg

Note that we have eliminated two adders, and
used only one memory unit (so it is Princeton
architecture) that contains both instructions
and data. It is not essential to have a single
memory unit, but it shows an alternative

design of the datapath.

In

In each cycle, a fraction of the instruction is

termediate re

isters are necessar

executed
PCWrite
¥
PC ALUSreA
lorD fJ\
| o
RegDst Reg\Write M
0 MemRead Y
M | Read Read A | *
u p=p Address register 1 data1 [™*| " "\L Zero
X
e Read
1 Memory IRu“ir|te 0 register 2 Read . B ? Result
, data 2
ite Mo (31-26] M Write 4 o 1 PCSource
—p [25-21] u register » - ALUOp
data Data ia X .
[20-18] Write ; "
| (15-11) 1 r; data Registers » 3
MemWrite [15-0] T
Instruction 0 ALUSrcB
register M
u Sign
Memaory X extend
data I
register U
MemToReg

Five stages of instruction execution

Cycle 1. Instruction fetch and PC increment

Cycle 2. Reading sources from the register file

Cycle 3 Performing an ALU computation
Cycle 4 Reading or writing (data) memory
Cycle 5 Storing data back to the register file

Why intermediate reqgisters?

Sometimes we need the output of a
functional unit in a later clock cycle during

the execution of an instruction.

(Example: The instruction word fetched in stage 1
determines the destination of the register write in
stage 5. The ALU result for an address computation
in stage 3 is needed as the memory address for Iw or
sw in stage 4.)

These outputs must be stored in
intermediate registers for future use.
Otherwise they will be lost by the next
clock cycle.

(Instruction read in stage 1 is saved in Instruction
register. Register file outputs from stage 2 are saved
in registers A and B. The ALU output will be stored in
a register ALUout. Any data fetched from memory in

stage 4 is kept in the Memory data register MDR.)

The Five Cycles of MIPS

(Instruction Fetch)
IR:= Memory[PC]
PC:= PC+4
(Instruction decode and Register fetch)

A:= Reg[IR[25:21]], B:=Reg[IR[20:16]]
ALUout := PC + sign-extend(IR[15:0]]
(Execute|Memory address|Branch completion)
Memory reference: ALUout:= A+ IR[15:0]

R-type (ALU): ALUout:= Aop B
Branch: if A=B then PC := ALUout

(Memory access | R-type completion)
LW: MDR:= Memory[ALUout]
SW: Memory[ALUout]:= B
R-type: Reg[IR[15:11]]:= ALUout

(Writeback)

LW: Reg[[20:16]]:= MDR

