
Design of the MIPS Processor (contd)

First, revisit the datapath for add, sub, lw, sw.

We will augment it to accommodate the beq

and j instructions.

Execution of branch instructions

add $v1, $v0, $zero

 add $v1, $v1, $v1

 j somewhere

L: add $v1, $v0, $v0

 Offset= 3x4=12

The offset must be added to the next PC to

generate the target address for branch.

beq $at, $zero, L

The modified version of MIPS

The final datapath for single cycle MIPS. Find

out which paths the signal follow for lw, sw,

add and beq instructions

Executing R-type instructions

The ALUop will be determined by the value of the

opcode field and the function field of the instruction

word

Executing LW instruction

Executing beq instruction
 The branch may

Control signal table

This table summarizes what control signals are

needed to execute an instruction. The set of

control signals vary from one instruction to

another.

How to implement the control unit?

The Control Unit

 ALUsrc

 I [31-26, 15-0] MemRead

 MemWrite

 ALUop

 RegDst

 Regwrite

All control signals are not shown here

Control

Instruction
Memory

1-cycle implementation is not used

Why? Because the length of the clock cycle will

always be determined by the slowest operation

(lw, sw) even when the data memory is not

used. Practical implementations use multiple

cycles per instruction, which fixes some

shortcomings of the 1-cycle implementation.

Faster instructions are not held back by the slower

instructions

The clock cycle time can be decreased.

Eventually simplifies the implementation of

pipelining, the universal speed-up technique

This requires some changes in the datapath

Multi-cycle implementation of MIPS

!"#$%&'#()"$"%'%*('+,-.-/(')(#$"01''

The multi-cycle version

Note that we have eliminated two adders, and

used only one memory unit (so it is Princeton

architecture) that contains both instructions

and data. It is not essential to have a single

memory unit, but it shows an alternative

design of the datapath.

Intermediate registers are necessary

In each cycle, a fraction of the instruction is

executed

Five stages of instruction execution

Cycle 1. Instruction fetch and PC increment

!"#$%&'(&&)%*+,-.&/012#%/&3204&56%&2%.,/5%2&3,$%&&&

Cycle 3 Performing an ALU computation
Cycle 4 Reading or writing (data) memory
Cycle 5 Storing data back to the register file

Why intermediate registers?

Sometimes we need the output of a

functional unit in a later clock cycle during

the execution of an instruction.

(Example: The instruction word fetched in stage 1

determines the destination of the register write in

stage 5. The ALU result for an address computation

in stage 3 is needed as the memory address for lw or

sw in stage 4.)

These outputs must be stored in

intermediate registers for future use.

Otherwise they will be lost by the next

clock cycle.

(Instruction read in stage 1 is saved in Instruction

register. Register file outputs from stage 2 are saved

in registers A and B. The ALU output will be stored in

a register ALUout. Any data fetched from memory in

stage 4 is kept in the Memory data register MDR.)

The Five Cycles of MIPS
 (Instruction Fetch)

IR:= Memory[PC]

 PC:= PC+4

(Instruction decode and Register fetch)

 A:= Reg[IR[25:21]], B:=Reg[IR[20:16]]

 ALUout := PC + sign-extend(IR[15:0]]

(Execute|Memory address|Branch completion)

Memory reference: ALUout:= A+ IR[15:0]

R-type (ALU): ALUout:= A op B

Branch: if A=B then PC := ALUout

(Memory access | R-type completion)

 LW: MDR:= Memory[ALUout]

 SW: Memory[ALUout]:= B

 R-type: Reg[IR[15:11]]:= ALUout

(Writeback)

 LW: Reg[[20:16]]:= MDR

