A Taxonomy of Parallel Computers

UMA	Uniform Memory Access
NUMA	Non Uniform Memory Access
COMA	Cache Only Memory Access
MPP	Massively Parallel Processor
COW	Cluster Of Workstations
CC-NUMA	Cache Coherent NUMA
NC-NUMA	No Cache NUMA

Processor-Memory Interconnection

The Butterfly Switch

Μ

Cube Interconnection Network

Contention Problems

For some reason, two processors cannot always access the memory at the same time. Why?

1. Switch contention

Because the network is blocking. Use switches of higher base and add additional switch columns to minimize this.

2. Memory module contention

System library helps distribute the elements of vectors and matrices among different memory modules.

3. Memory location contention

Loop index variables Lock variables like semaphores (Recall the mutual exclusion or the barrier synchronization problems)

How to avoid or resolve these contention problems?

Other potential contention-related problems Hot-spots and Tree saturation

A hot spot is a memory bank that attracts significant amount of traffic.

M0 is the hot spot. But how difficult is it for P1 to access M1, if *store-and forward switching* is used?

(In store-and-forward switching, the pending requests for memory access are buffered in the intermediate switches. This can delay access to an otherwise cold spot by a not-so-active processor.)

Memory Location Contention

In addition to distributing the elements of vectors or matrices among different memory modules, sometimes solutions can be restructured to minimize memory location contention.

Example. S = Σ X(j), initially P_i contains X(j).

There are 8 processors 0..7

Solution 1.

Contention is a problem since S is a hot spot.

Solution 2. Divide and conquer.

Distribute S, S1, S2, S3, ... among different modules.

<u>Clusters</u>

Independent machines connected through LAN.

A cluster with K machines has as much administrative overhead as K independent machines.

Due to modular construction, clusters are easier to maintain.

What is the impact of NUMA characteristics on the overall speed-up of the computation?

What is the price of implementing a CC-NUMA? Consider the problem of adding 100,000 integers on a 64-node cluster.

DSM (Distributed Shared Memory) adds to the cost but simplifies programming.