
Software Pipelining

for (i=1, i<100, i++) {

 x := A[i];

 x := x+1;

A[i] := x

}

load A[1]

incr A[I] load A[2]

store A[1] incr A[2] load A[3]

 store A[2] incr A[3] load A[4]

 store A[3] incr A[4] . . .

 store A[4] . . .

. . .

store A[100]

An alternative
method of
reorganizing loops
to increase
Instruction level
Parallelism.

Now group these instructions horizontally as they are

shown in the rectangular boxes. After the first three

instructions, the loop can be restructured as

for (i=1, i<98, i++) {

store A[i] These can be executed in parallel.

incr A[i+1] No data dependency exists

load A[i+2]

}

This is followed by the last three instructions.

More examples of compiler support to ILP

Problems with loop –carried dependence

Example 1 . The following type of computation is found in

many recurrence relations:

for (i=2; i <= 100; i=i+1) {

y(i) = y(i-1) + y(i)

}

Now unroll it, and notice the loop-carried dependencies.

y(2) = y(1) + y(2)

y(3) = y(2) + y(3) ILP suffers

y(4) = y(3) + y(4)

Loop unrolling does not help.

Example 2 Consider the following program

for (i=6; i <= 100; i=i+1) {

y(i) = y(i-5) + y(i)

}

y(6) = y(1) + y(6)

y(7) = y(2) + y(7) ILP improves!

y(8) = y(3) + y(8)

Loop unrolling helps!

Pentium Micro-architecture

Pentium 3 > Pentium Pro > Pentium 4

Instruction length 1-17 bytes, awkward for pipelining

All decode IA-32 instructions into micro-operations

(MIPS like instructions) since it makes pipelining

easier. Complex instructions requiring many cycles

are executed by standard micro-programmed control.

® Up to four micro-operations scheduled per clock

® Speculative pipeline

® Multiple functional units (7 in Pentium vs 5 in Pro)

® Pipeline depth = 20 (vs. 10 in Pentium Pro)

® Uses trace cache (it has its own 512 entry BTB)

® Better Branch Prediction (4K size in Pentium 4

vs. 512 in Pro)

Trace cache

A trace cache is a mechanism for increasing the instruction fetch

bandwidth by storing traces of instructions that have already been

fetched. The mechanism was first proposed by Eric Rotenberg, Steve

Bennett, and Jim Smith in their 1996 paper "Trace Cache: a Low

Latency Approach to High Bandwidth Instruction Fetching."

Stored in trace cache

Instructions are added to trace caches in groups representing either

individual basic blocks or dynamic instruction traces. A basic block

consists of a group of non-branch instructions ending with a branch.

A dynamic trace ("trace path") contains only instructions whose

results are actually used, and eliminates instructions following taken

branches (since they are not executed); a dynamic trace can be a

concatenation of multiple of basic blocks.

Branch
prediction

Branch
prediction

Branch
prediction

Pentium micro-architecture

Instruction prefetch
and decode

Trace cache

Micro-operation
queue

Dispatch and Register Renaming

Integer and FP operation queue Memory op queue

Branch
prediction

buffer

Complex
instructions

Int
2X

Int
2X

FP Load Store

Commit
Unit

Register
File

Data Cache

Up to 126 mops
here4096

entries

Handles
MMX & SSE
instructions

Pentium 4 Pipeline schedule

5

 Micro-operation queue

4

 Functional unit queue

5

2

1

 Re-0rder Buffer
3

 20 cycles

Trace cache & BTB access

Re-order buffer and
register renaming

Scheduling

Register file
access

Execution

Commit

Problems with IA-32

1. Two-address instruction set architecture.

2. Irregular register set and small number of registers.

3. Variable length instruction sizes and variable length

opcodes make pipelining challenging.

4. The micro-architecture breaks the instructions into MIPS

like micro-operations, but it complicates the design and

wastes silicon.

5. Large number of pipeline stages (up to 20 in Pentium 4)

increases branch penalty, unless the branch prediction is

accurate.

The IA-64 model

Developed with HP using the model of PA-RISC.

128 registers, each register is 64-bits long.

64 predicate registers

4 1 41 4 1 5

A bundle consists of 128 bits. Ordinarily the three

instructions can be scheduled in parallel. Bundles can be

chained, i.e. some instructions from different bundles can be

scheduled in parallel.

instruction 1 instruction 2 instruction 3 template

instruction 1 instruction 2 instruction 3 template

instruction 1 instruction 2 instruction 3 template

 Instruction format

A

 14 6 7 7 7

• All instructions are predicated.

• Templates link bundles consisting of instructions that

can be scheduled in parallel.

• EPIC model, similar to VLIW.

• Supports speculative execution. One or more bundles

can be scheduled every cycle.

Opcode predicate R1 R2 R3

Register rotation

Why 128 registers?

The called procedures use a different set of physical

registers. Thus the architectural registers R0-R31 are

essentially renamed. The overlapped sections simplify

parameter passing.

Multiple iterations of a loop use multiple rotating

registers. Emulates loop unrolling.

R0
R1

R2

Compare operations

Play a key role in predication.

If (a == b) { {

c++ cmp.eq p1, p2 = ra, rb

} else { (p1) add rc = rc, 1

d++ (p2) add rd = rd, 1

} }

