
1

Advanced Pipelining Techniques

1. Dynamic Scheduling

2. Loop Unrolling

3. Software Pipelining

4. Dynamic Branch Prediction Units

5. Register Renaming

6. Superscalar Processors

7. VLIW (Very Large Instruction Word) Processors

8. EPIC (Explicitly Parallel Instruction Computers)

9. IA-64 Features

2

Dynamic Scheduling: CDC 6600 Style

Restructure

the pipeline

Issue (I) = decode & wait for all structural hazards to clear

Read (R) = read operands

Instructions can be issued out-of-order and they can

complete out-of-order. First used in CDC 6600.

Dynamic pipelining needs additional buffer space between

stages, but will also speedup computation.

F D X M W

F I X M WR

F I X M WR

F I X M WR

3

The Impact of Dynamic Scheduling

Assume that the processor has one add/subtract unit (2 cycles), one

multiplier (3 cycles) and a division unit (5 cycles).

Example 1 (speedup)

With static scheduling

1. F2 := F4 / F6 F I R X X X X X M W

2. F10 := F2 + F8 F I o o o o o o o R X X M W

3. F12 := F6 - F14 F o o o o o o o o o o I R X X..

With dynamic scheduling

1. F2 := F4 / F6 F I R X X X X X M W

2. F10 := F2 + F8 F I o o o o o o o R X X M W

3. F12 := F6 * F14 F I R X X M W

Read delayed to avoid
RAW hazard (with no
data forwarding

Issue delayed to
avoid structural
hazard

No need to
delay this one

4

Example 2 (Possibility of new hazards)

1. F2 := F4 * F6 F I R X X X M W

2. F8 := F10 * F12 F o o o o I R X X X M W

3. F8 := F14 / F6 F I R X X X X X M W*

Note. This WAW hazard was not possible with static

scheduling.

5

Example 3 (Write After Read, or WAR Hazard)

1. F12 := F4 / F6 F I R X X X X X M W

2. F8 := F10 / F12 F o o o o o o I o R* X X X X M

3. F10 := F14 + F6 F I R X X M W

This is a new problem. Instruction 2 now reads the

new value of F10 already modified by instruction 3.

Did the programmer intend this? No!

WAR hazard is also known as anti-dependence. One

solution is to delay the write (W) operation when a

read (R) is pending from an earlier instruction.

Question

Is WAR hazard possible without dynamic scheduling?

Reads the new
value of F10
instead of the
old value

6

The CDC 6600 Processor (a quick look)

Instruction Formats

Short format

 3 3 3 3 3

Long format

 3 3 3 3 18 (Load/Store)

M

E

M

O

R

Y

 8 60-bit
Accumulators
 X0-X7

8 18-bit
Address Regist
 A0-A7

 8 18-bit
 Index Register
 B0-B7

Instruction buffer
16-32 instructions

Increment

FP add

FP multiply

FP division

Scoreboard

op op dst src src
s r c

op op i j address D

7

CDC 6600 dynamic scheduling (Scoreboarding)

Phase 1

ISSUE (Fetch & decode instruction)

Make sure that there is no structural hazard, or if

there is no pending instruction with the same

destination register. This avoids WAW hazard.

Phase 2

READ OPERANDS (Delay reading to avoid RAW)

Phase 3

EXECUTE

Phase 4

MEMORY OPERATION

Phase 5

WRITE (Delay the write (W) operation if a read (R) is

pending from an earlier instruction. This avoids WAR)

8

Tomasulo Approach

It is an alternative method of dynamic scheduling that

was first used in IBM 360/91. Historically compilers

resolved name dependencies by allocating new

registers to existing variables (Register Renaming),

Tomasulo used this idea to avoid WAR and WAW.

What is Register Renaming?

1 R1 := R2 + R3

2 R2 := R3 – R4 (WAR with 1)

3 R5 := R1 & R2 (RAW with 2, RAW with 1)

4 R1 := R3 or R4 (WAW with 1, WAR with 3)

5 R9 := R1 – R12 (RAW with 4)

1 R1 := R2 + R3

2 R6 := R3 – R4 WAR is gone!

3 R5 := R1 & R6

4 R7 := R3 or R4 Both WAW and WAR are gone!

5 R9 := R7 – R12

9

Tomasulo Scheme

Run-time Renaming using Reservation Stations.

Register file Reservation stations are waiting rooms

Common

Data Bus

 (Issue) If the latest copy is available then send a

copy of the operands from the register file to a

reservation station. Otherwise, wait to receive the

result from another functional unit.

R5:= R1 & R2 R5 := copy of R1 & R2

R1:= R3 or R4 R1 := R3 or R4

 (WAR) (No WAR)

Add

Multiply

Re-order
buffer

10

(Execute) When both operands are available, and

the functional unit is available, execute (avoids RAW)

(Write) Write Result to a Common Data Bus. This

helps forward data to multiple reservation stations. At

the same time, the result is sent to a commit unit

called the re-order buffer.

Re-order buffer

Results are written into a pool of temporary

buffers. They are written into the actual registers

when there is no risk of a WAW hazard. Data may be

forwarded from here too (much like internal data

forwarding). It is easy to undo the execution of

speculative instructions.

11

Avoiding data hazards in Tomasulo Scheme

More Examples

1 F6 := M[R2+34]

2 F10 := F10/F6

3 F6 := F8+F2

If instruction 1 has not computed the new value of F6

when instruction 2 has been issued, then instruction

2 waits at the reservation station of the divider. F6 is

forwarded from the output of the Load Buffers.

To avoid WAW between 1 and 3, the values of F6

are committed in instruction order from the re-order

buffer.

12

Dynamic Branch Prediction

In the simple 5-stage MIPS pipeline, predict-not-

taken is simple prediction strategy. This is ok since

the penalty for misprediction is not much.

If the penalty is large (as in many deeply

pipelined machines or superscalar processors), we

cannot afford make frequent incorrect predictions.

The predictions have to be more sophisticated.

Some popular schemes are:

1-bit/2-bit prediction using Branch Prediction Buffers

Branch target buffer

13

A 1-bit scheme for dynamic branch prediction

for (i =10, i > 0, i =i - 1)

x := x+1

 Yes

 i = 0?

 No

With the branch instruction, a history bit is associated.

The bit is changed as follows:

Not taken

Not

Taken taken

 Taken

(T= taken, NT= not taken)

The success rate of branch prediction is 80%.

 F, T, T, T, T, T, T, T, T, F, F, T, T, T, T, T, T, T, T, F, F

x:=x+1 i:= i-1

T NT

14

A 2-bit scheme

 not taken

 taken

 taken

taken not taken

 not taken

 not taken

taken

For the same program, the success profile is:

F, F, T, T, T, T, T, T, T, F, T, T, T, T, T, T, T, T, T, F, T

Predictions do not change here

T T

NTNT

15

Branch prediction buffer

 Instr addr prediction bits

The buffer is indexed by the

last few bits of the address

of the branch instructions.

Buffer read in the “D” phase. Penalty for wrong

prediction depends on when the PC is calculated.

