Floating point operations in MIPS

32 separate single precision FP registers in MIPS
$\mathrm{f0}, \mathrm{f} 1, \mathrm{f} 2, \ldots \mathrm{f} 31$,
Can also be used as 16 double precision registers
f0, f2, f4, f30 (f0 means f0,f1 f2 means f2,f3)

These reside in a coprocessor C 1 in the same package

Operations supported
add.s $\quad \$ \mathrm{f} 2, \$ \mathrm{f} 4, \$ \mathrm{f6} \quad \# \mathrm{f} 2=\mathrm{f} 4+\mathrm{f6}$ (single precision)
add.d $\quad \$ \mathrm{f} 2, \$ \not \mathrm{f} 4, \$ \mathrm{f6} \quad \# \mathrm{f} 2=\mathrm{f} 4+\mathrm{f} 6$ (double precision)
(Also subtract, multiply, divide format are similar)

Iwc1 $\quad \$ 11,100(\$ s 2) \quad \# f 1=M[s 2+100] \quad$ (32-bit load)
mtc1 \$t0, \$f0 \# f0 = t0 (move to coprocessor 1)
mfc1 $\$ \mathrm{t} 1, \mathrm{\$ f1} \quad \# \mathrm{t} 1=\mathrm{f} 1$ (move from coprocessor 1)

Sample program

Evaluation of a Polynomial a. $\mathbf{x}^{2}+\mathrm{b} . \mathrm{x}+\mathrm{c}$

Sequential Circuits

The output depends not only on the current inputs, but also on the past values of the inputs.

An SR Latch

S	R	Q	\bar{Q}	Comment
0	0	$0 / 1$	$1 / 0$	Old state continues
1	0	1	0	Set state
0	1	0	1	Reset state
1	1	0	0	Illegal inputs

A clocked D-latch

Clock is the enabler. If $C=0, Q$ remains unchanged. When $C=1$, then Q acquires the value of D. We will use it as a building block of sequential circuits.

There are some shortcomings of this simple circuit. An edge-triggered circuit (or a master-slave circuit) solves this problem (to be discussed in the class)

Master-Slave D flip-flop

Internal details shown

The output Q acquires the value of the input D, only when one complete clock pulse is applied to the clock input.

Register

A 8-bit register is an array of 8 D-flip-flops.

Abstract view of a register

Binary counter

Counts $0,1,2,3, \ldots$

A 4-bit counter (mod-16counter)

Observe how Q3 Q2 Q1 Q0 change when pulses are applied to the clock input

State diagram of a 4-bit counter
Here state $=$ Q3Q2Q1Q0

Recall that the program counter is a 32-bit counter

A shift register

Shift (right)

With each pulse on the shift input, data moves by pulse to the right.

