Fast Carry Propagation

During addition, the carry can trigger a "ripple" from the LSB to the MSB. This slows down the speed of addition.
$01111111111111111111+$
00000000000000001

Calculate the max time it takes to complete a 32-bit addition if each stage takes 1 ns. How to overcome this? Consider the following:

$$
\begin{aligned}
c 1 & =a 0 . b 0+a 0 . c 0+b 0 . c 0 \\
& =a 0 . b 0+(a 0+b 0) \cdot c 0 \\
& =90+p 0 . c 0
\end{aligned}
$$

(where $g 0=a 0 . b 0, p 0=a 0+b 0)$
$c 2=a 1 . b 1+(a 1+b 1) \cdot c 1$
$=g 1+p 1 .(g 0+p 0 . c 0)$
$=\quad 91+p 1 . g 0+p 1 . p 0 . c 0$

We could calculate c32 in this way.

It will be complex. But how much time will it take now? Assume that each gate takes 1 ns .

You can always use a two-level circuit to generate c32, which will speed-up addition (do 32-bit addition in 2 ns), but it is impractical due to the complexity.

Many practical circuits use a two-phase approach. Consider the example of a 16-bit adder, designed from four 4-bit adders. Let

```
\[
G 0=g 3+p 3 . g 2+p 3 . p 2 . g 1+p 3 . p 2 . p 1 . g 0
\]
G1 = g7 + p7.g6 + p7.p6.g5 + p7.p6.p5.g4
\[
G 2=g 11+p 11 . g 10+p 11 . p 10 . g 9+p 11 . p 10 . p 9 . g 8
\]
\[
G 3=g 15+p 15 . g 14+p 15 . p 14 . g 13+p 15 . p 14 . p 13 . g 12
\]
PO = p3.p2.p1.p0
P1 = p7.p6.p5.p4
P2 = p11.p10.p9.p8
P3 = p15.p14.p13.p12
```

Then if $C 1, C 2, C 3, C 4$ are the output carry bit from the $1^{\text {st }}, 2^{\text {nd }}$, $3^{\text {rd }}, 4^{\text {th }} 4$-bit adders, then we can write

$$
\begin{aligned}
& \mathrm{C} 1=\mathrm{G} 0+\mathrm{P} 0 . \mathrm{C} 0 \\
& \mathrm{C} 2=\mathrm{G} 1+\mathrm{P} 1 . \mathrm{C} 1=\mathrm{G} 1+\mathrm{P} 1 . \mathrm{G} 0+\mathrm{P} 1 . \mathrm{P} 0 . \mathrm{C} 0 \\
& \mathrm{C} 3=\mathrm{G} 2+\mathrm{P} 2 . \mathrm{C} 2=\mathrm{G} 2+\mathrm{P} 2 . \mathrm{G} 1+\mathrm{P} 2 . \mathrm{P} 1 . \mathrm{G} 0+\mathrm{P} 2 . \mathrm{P} 1 . \mathrm{P} 0 . \mathrm{C} 0 \\
& \mathrm{C} 4=\mathrm{G} 3+\mathrm{P} 3 . \mathrm{C} 3=\mathrm{G} 3+\mathrm{P} 3 . \mathrm{G} 2+\mathrm{P} 3 . \mathrm{P} 2 . \mathrm{G} 1+\mathrm{P} 3 . \mathrm{P} 2 . \mathrm{P} 1 . \mathrm{G} 0+\mathrm{P} 3 . \mathrm{P} 2 . \mathrm{P} 1 . \mathrm{P} 0 . \mathrm{C} 0
\end{aligned}
$$

How does it help? Count the number of levels. The smaller is this number, the faster is the implementation This is implemented in the carry look-ahead adder.

There are other implementations too.

FIGURE B.5.11 A 32-bit ALU constructed from the 31 copies of the 1-bit ALU in the top of Figure B.5.10 and one 1-bit ALU in the bottom of that figure. The Less inputs are connected to 0 except for the least significant bit, which is connested to the Set output of the most significant bit. If the ALU performs $\mathrm{a}-\mathrm{b}$ and we select the input 3 in the multiplexor in Figure B.5.10, then Result $=0 \ldots 001$ if $\mathrm{a}<\mathrm{b}$, and Result $=0 \ldots 000$ otherwise.

FGURE B.6.3 Four 4-bit ALUs using carry lookahead to form a $\mathbf{1 6}$-bit ackder. Note that the carries come from the carry-lookahead unit, not from the 4 -bit ALUs.

