
Positional List
	
The Concept

The list is a generalization of both stacks and queues. But we

are very restricted as to where these insertions and deletions

may occur. Generally, two positions are recognized: front and

rear. If a list has at least one node, the front is the position

occupied by this node; if a list is empty, the front coincides with

the rear.

For flexibility, both access and mutation should happen

anywhere in the list. For this, we need the concept of a current

position or a cursor, which defines a viewing point or a viewing

window. It is the place where the activities are directed. A

positional list allows this. The use of such an ADT

cursor

front
rear

cursor
front

rear

• Allows a person to leave a line before reaching the front

• Allows word processing actions (insert or delete happen

at the cursor)

Here's a possible informal specification for a positional list ADT

Accessor

boolean isEmpty() : Is list empty?

int lengthOf() : yields # of nodes in list

Object getObj() : contents at the cursor

boolean atFront() : Is cursor the front of list?"

boolean atRear() : Is cursor the rear of list?"

Navigator

void toFront() : sets cursor to front of list

void toRear() : sets cursor to rear of list

void toNext() : moves cursor one place closer

to rear

void toPrev() : moves cursor one place closer

to front

Mutators

void replace(x) : replaces current node's contents with x

void insert(x) : inserts new node containing x as the

 predecessor of the cursor

void insertFront(x) : inserts new node containing x in front

void insertRear(x) : inserts new node containing x at rear

void remove() : removes the node at the current position;

 the successor becomes the current position

Find the length of (i.e., the number of nodes in) a list.

public static int length(PositionalList list){

 int center = 0;

 list.toFront();

 // center = # of nodes before the cursor

 while (!list.atRear()) {

 center = center + 1;

 list.toNext();

 }

 return center;

 }

Priority Queue ADT

A regular queue is a FIFO object, but there are many real-life

applications, where the FIFO is not adequate. Here are some

examples.

• Air-traffic control

• Standby passenger queue for a flight

• Waiting list for a course at UI

In such cases, a priority queue is relevant. Each element (v)

has a key (k) that defines its priority. Lower key means higher

priority. So the object with the minimum key will be dequeued

first.

Each entry is a key-value pair.

A Priority Queue ADT can support the following methods

Insert (k, v) Creates value v with key k

removeMin () Returns and removes the value with minimum

key

Min() Returns the value with the minimum key

Size() Returns the number of entries

isEmpty() Returns true when the priority queue is empty

Priority can be a number, or any java object, as long as they

are comparable, and help create a total order among the

elements.

Compare(x, y): returns an integer i such that

• i < 0 if a < b,

• i = 0 if a = b

• i > 0 if a > b

An error occurs if a and b cannot be compared

If the ordering is not natural, then a comparator is provided at

the queue construction time. Note that the notion of priority

may vary from one user to another. For example, if there are

two stocks P and Q to buy, one Alice may P to be more

important than Q, but Bob may think differently.

One common use of a priority queue is the “event queue” in a

simulation. Here

Key = time of the event

Value = Description of the event

Implementing a Priority Queue

Think of these

Use an array that stores elements in arbitrary order.

What is the insert time? What is the removeMin time?

Use an array with values in sorted order, low to high.

What is the insert time? What is the removeMin time?

Also, we’ll need to keep track of the number of values

currently in the queue, we'll need to decide how big to

make the array initially, expand the array if it gets full

What if we use a linked list?

Binary Heap

A popular implementation of the priority queue ADT

uses a binary heap. A binary heap is a complete binary

tree, a tree in which every level is full, except possibly

the bottom level, or bottom row, which is filled from left

to right, and it satisfies the heap-order property

(For a min-heap) “Key at a node ≥ Key at its parent”

[For a max-heap, this order requirement is the reverse, i.e.

 “Key at a node ≥ Key at its parent”]

Source:	 Wikipedia	

	
The array representation of the binary heap is as follows. Let us

keep the key at index 0 blank or null.

	

	

	
	
	

Thus, for node k, the left child and the right child are nodes 2k

and (2k+1) respectively. Similarly, for a node i (that is not the

root), the parent is node i / 2⎢⎣ ⎥⎦ 	
	

Priority queue operations with a binary heap

1. Min ()

 Return the entry at the root node

0 1 2 3 4 5 6 7 8 9

1 2 3 17 19 36 7 25 100

2. Insert x = (k, v)

 Add x to the bottom row, at the first “free” slot from the

left. If the bottom level is full, then create a new level and make

x the first element of the new level. If the heap-order property

is violated, then let x bubble up the tree via repeated swap

operations (between the keys at the parent and the child)

Argue that the heap-order property is satisfied at the end of the

insertion.

1

4 2

9 7 13 5

22 12 8

1

4 2

9 7 13 5

22 12 8

insert 3

3

1

4 2

9

7

13 5

22 12 8

3

1

4

2

9

7

13 5

22 12 8

3

3. RemoveMin()

If the heap is empty, then return null (or throw an exception).

Otherwise, (1) return the root node, and (2) fill the hole with the

last node in the array.

The new minimum must be one of the children of the former

root. Since each subtree is a binary heap, the new root will

bubble down (via repeated swap operations) until the heap

property is restored.

1

4 2

9 7 13 5

22 12 8

4 2

9 7 13 5

22 12

8

removeMin()

4

2

9 13

5

22 12

8

2

9 7 13 5

22 12

8 moved to root

Key 1 returned

84

7

Time complexity

 Unsorted array Sorted array Binary heap

min O(n) O(1) O(1)

insert O(1)* O(n)

O(log n)**

O(log n)

remove O(n) O(1) O(log n)

* It assumes that there is enough space to insert the entry. If not, then

space has to be allocated and entries have to be copied to the new

space, which will take O(n) time.

** You can use binary search for the position where the new entry will

be inserted. But there is an overhead for making room in an array – the

items have to be shifted to the right, and each such operation will take

O(n) time.

Other operations on a Binary Heap

Delete Key.

It is useful when someone wants to leave the queue. The

last key substitutes the deleted key. The last key

bubbles up or down as needed to restore the heap

order property.

1

7

22

12 8

10

11 25

17 9

1

7

22

12 8

10

25

17

9

1

7

22

12 8 10 25

17

9

delete 11

last

Heapify

What is heapify? Given n elements, construct a binary

heap out of them.

Bottom-up method.

• First, decide how many levels will be there.

• Place a set of nodes at the bottom level. Each such

node is a degenerate heap.

• Next, fill the next level by adding a parent to the

nodes at the lower level. Bubble the added nodes,

as necessary, to restore the heap order property.

• Continue this up to the topmost level.

Can easily do in O(n log n) steps. Why?

Example. Try to construct a heap from the elements

First, how many levels will be there?

22 7 12 926 14 15 11 8 3 7

8 3 7

9 14 15

11

8 3

79

14 15

11

11

12

12

7 26

8

3

79

14

15

11 12

7 26

3 14

22

Timewise, we can do better than O(n log n). We can

show that heapification actually takes O(n) time. Why?

Let us see.

Height = h Number of nodes = n

0 8

1 4

2 2

3 1

h = 0

h = 1

h = 2

h = 3

n= 15

So, the number of nodes n with height h ≤ n
2h+1

⎡
⎢⎢

⎤
⎥⎥
	

	

Thus the total time for the n nodes to bubble down and

form a binary heap =

	

n
2h+1

⎡
⎢⎢

⎤
⎥⎥h=0

h= log2 n⎡⎢ ⎤⎥

∑ . h =

≤ n
2h
.

h=0

h= log2 n⎡⎢ ⎤⎥

∑ h [h
2hh=0

∞

∑ = 2]

≤ 2.n 	

	 	

	

Sorting with a priority queue

1. Insert elements into an empty priority queue

2. Remove the elements from the priority queue.

If we implement the PQ with a binary heap, then we can

sort in O(n log n) time, since each insert or delete

operation in a binary heap takes O(log n) time.

Phase 1. The kth insert takes O(log k) time. So this phase

takes O(n log n) time.

Phase 2. The jth removeMin() operation takes

O(log (n-j+1)) time. So this phase takes O(n log n) time.

This is the idea of heap-sort.

