
Positional List 
	  
The Concept 
 
The list is a generalization of both stacks and queues. But we 

are very restricted as to where these insertions and deletions 

may occur.  Generally, two positions are recognized: front and 

rear. If a list has at least one node, the front is the position 

occupied by this node; if a list is empty, the front coincides with 

the rear. 

 

 

 
 

For flexibility, both access and mutation should happen 

anywhere in the list. For this, we need the concept of a current 

position or a cursor, which defines a viewing point or a viewing 

window. It is the place where the activities are directed. A 

positional list allows this. The use of such an ADT
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• Allows a person to leave a line before reaching the front 

• Allows word processing actions (insert or delete happen 

at the cursor) 

 

Here's a possible informal specification for a positional list ADT 

 
Accessor   
 
boolean isEmpty() : Is list empty?  

int lengthOf()    : yields # of nodes in list  

Object getObj()   : contents at the cursor  

boolean atFront() : Is cursor the front of list?"  

boolean atRear()  : Is cursor the rear of list?" 

 
 
 

Navigator 

void toFront() : sets cursor to front of list  

void toRear()  : sets cursor to rear of list  

void toNext()  : moves cursor one place closer 

to rear  

void toPrev()  : moves cursor one place closer 

to front  
 
 



Mutators  

void replace(x)   : replaces current node's contents with x  

void insert(x)       : inserts new node containing x as the 

                             predecessor of the cursor  

void insertFront(x)  : inserts new node containing x in front  

void insertRear(x)   : inserts new node containing x at rear   

void remove()        : removes the node at the current position; 

                                    the  successor becomes the current position  
 
 

Find the length of (i.e., the number of nodes in) a list.  
 
public static int length(PositionalList list){ 

       int center = 0; 

       list.toFront(); 

      // center = # of nodes before the cursor  

  while ( !list.atRear() )  { 

          center = center + 1; 

          list.toNext(); 

       } 

       return center; 

    }  

 
 
 
 
 
 



 

Priority Queue ADT 
 
 

A regular queue is a FIFO object, but there are many real-life 

applications, where the FIFO is not adequate. Here are some 

examples. 

 

• Air-traffic control 

• Standby passenger queue for a flight 

• Waiting list for a course at UI 

 

In such cases, a priority queue is relevant. Each element (v) 

has a key (k) that defines its priority. Lower key means higher 

priority. So the object with the minimum key will be dequeued 

first. 

 

Each entry is a key-value pair. 



 

A Priority Queue ADT can support the following methods  

 

Insert (k, v) Creates value v with key k 

removeMin ( ) Returns and removes the value with minimum 

key 

Min( ) Returns the value with the minimum key 

Size( ) Returns the number of entries 

isEmpty( ) Returns true when the priority queue is empty 

 
 
 
Priority can be a number, or any java object, as long as they 

are comparable, and help create a total order among the 

elements.  

 

Compare(x, y): returns an integer i such that  

• i < 0 if a < b, 

• i = 0 if a = b 

• i > 0 if a > b 

An error occurs if a and b cannot be compared 

 

 

 



If the ordering is not natural, then a comparator is provided at 

the queue construction time. Note that the notion of priority 

may vary from one user to another. For example, if there are 

two stocks P and Q to buy, one Alice may P to be more 

important than Q, but Bob may think differently. 

 

 

 
One common use of a priority queue is the “event queue” in a 

simulation.  Here 

 

Key  = time of the event 

Value = Description of the event 



Implementing a Priority Queue 
 

Think of these 

Use an array that stores elements in arbitrary order. 

What is the insert time? What is the removeMin time? 

 

 

 

Use an array with values in sorted order, low to high. 

What is the insert time? What is the removeMin time? 

 

 

 

Also, we’ll need to keep track of the number of values 

currently in the queue, we'll need to decide how big to 

make the array initially, expand the array if it gets full 

 

 

What if we use a linked list? 



Binary Heap  

A popular implementation of the priority queue ADT 

uses a binary heap. A binary heap is a complete binary 

tree, a tree in which every level is full, except possibly 

the bottom level, or bottom row, which is filled from left 

to right, and it satisfies the heap-order property  

 

 

(For a min-heap) “Key at a node ≥ Key at its parent” 

 

 

[For a max-heap, this order requirement is the reverse, i.e.  

 “Key at a node ≥ Key at its parent”] 

 

Source:	  Wikipedia	  



	  
The array representation of the binary heap is as follows. Let us 

keep the key at index 0 blank or null. 

	  

	  

	  
	  
	  

Thus, for node k, the left child and the right child are nodes 2k 

and (2k+1) respectively. Similarly, for a node i  (that is not the 

root), the parent is node i / 2⎢⎣ ⎥⎦ 	  
	  
 
Priority queue operations with a binary heap 
 
 

1. Min ( )  

 Return the entry at the root node 

0 1 2 3 4 5 6 7 8 9

1 2 3 17 19 36 7 25 100



2. Insert x = (k, v) 

 Add x to the bottom row, at the first “free” slot from the 

left. If the bottom level is full, then create a new level and make 

x the first element of the new level. If the heap-order property 

is violated, then let x bubble up the tree via repeated swap 

operations (between the keys at the parent and the child) 

 

 

 

Argue that the heap-order property is satisfied at the end of the 

insertion. 
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3. RemoveMin() 

If the heap is empty, then return null (or throw an exception). 

Otherwise, (1) return the root node, and (2) fill the hole with the 

last node in the array. 

 

The new minimum must be one of the children of the former 

root. Since each subtree is a binary heap, the new root will 

bubble down (via repeated swap operations) until the heap 

property is restored. 
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Time complexity 

 

 Unsorted array Sorted array Binary heap 

min O(n) O(1) O(1) 

insert O(1)* O(n)  

O(log n)** 

O(log n) 

remove O(n) O(1) O(log n) 

 
* It assumes that there is enough space to insert the entry. If not, then 

space has to be allocated and entries have to be copied to the new 

space, which will take O(n) time.  

 

** You can use binary search for the position where the new entry will 

be inserted. But there is an overhead for making room in an array – the 

items have to be shifted to the right, and each such operation will take 

O(n) time. 



Other operations on a Binary Heap 
 

Delete Key.  

It is useful when someone wants to leave the queue. The 

last key substitutes the deleted key. The last key 

bubbles up or down as needed to restore the heap 

order property. 
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Heapify 
 

What is heapify? Given n elements, construct a binary 

heap out of them. 

 

Bottom-up method.  

• First, decide how many levels will be there. 

• Place a set of nodes at the bottom level. Each such 

node is a degenerate heap.  

• Next, fill the next level by adding a parent to the 

nodes at the lower level. Bubble the added nodes, 

as necessary, to restore the heap order property.  

• Continue this up to the topmost level. 

 

Can easily do in O(n log n) steps. Why? 

 

Example. Try to construct a heap from the elements 

 

 

First, how many levels will be there?

22 7 12 926 14 15 11 8 3 7



 

8 3 7

9 14 15

11

8 3

79

14 15

11

11

12

12

7 26

8

3

79

14

15

11 12

7 26

3 14

22



 

Timewise, we can do better than O(n log n). We can 

show that heapification actually takes O(n) time. Why? 

Let us see. 
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So, the number of nodes n with height h ≤ n
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Thus the total time for the n nodes to bubble down and 

form a binary heap = 
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Sorting with a priority queue 

 

1. Insert elements into an empty priority queue 

2. Remove the elements from the priority queue.  

 

If we implement the PQ with a binary heap, then we can 

sort in O(n log n) time, since each insert or delete 

operation in a binary heap takes O(log n) time. 

 

Phase 1. The kth insert takes O(log k) time. So this phase 

takes O(n log n) time. 

 

Phase 2. The jth removeMin() operation takes   

O(log (n-j+1)) time. So this phase takes O(n log n) time. 

 

This is the idea of heap-sort. 

 

 

 


