
The Stack ADT

A Stack is a collection of objects inserted and removed

according to the Last In First Out (LIFO) principle. Think of a

stack of dishes.

Push and Pop are the two main operations

Browsers, while displaying a new webpage, push the

address of the current page into a stack. The address of the

previous page can be popped out of the stack.

Think of the undo operation of an editor. The recent changes

are pushed into a stack, and the undo operation pops it from

the stack.

An array based stack implementation

Main update methods:

 Push (e)

 Pop ()

Additional useful methods

 Peek () Same as pop, but does not remove the element

 Empty() Boolean, true when the stack is empty

 Size () Returns the size of the stack

public class Stack {

}

 public Stack {

 }

 public Boolean empty() {

 }

 public void push (String str) {

 }

 public String pop() {

 {

 public String peek () {

 }

}

Array Based Implementation of Stack

public class Stack {
 int maxSize;
 int top;
 String arr[];
}

 public Stack {int n} {
 maxsize = n ;
 arr = new String [maxSize];
 top = 0;
 }

 public Boolean empty() {
 if (top == 0)
 return true;
 } else {
 return false;
 }
 }

 public void push (String str) {
 array[top] = str;
 top++;
 }

 public String pop() {
 if (top > 0) {
 return arr[top-1];
 arr[top-1] = null;
 top --;
 }
 else {
 return null
 }
 public String peek () {
 }
}

public static void main (String args []) {

stack myStack = new Stack(7);

 myStack.push(“cat”);

 System.out.println(myStack.peek());

 myStack.push(“dog”);

 System.out.println(myStack.empty());

 myStack.push(“horse”);

 etc etc

Uses of Stack

Other than implementing undo and browser back buttons,

stacks have many applications.

• You can reverse a string using a stack. How?

• Checking if the parentheses are well formed

[() ()] is well-formed, but [((])) is not.

• Expression evaluation by JVM. How will it compute 3+4 =

7 or (3+4)* (6-9) + 18? (More to be discussed in the class)

• Activation records at runtime

Class Xyz {

 firstMethod {

 int b;

 }

 secondMethod {

 int c;

 }

 thirdMethod {

 }

}

 Heap and Stack space allocation to be discussed in the class

Advantages of Array-based Implementation

Fast – all operations are completed in O(1) time

Limitations of Array-based Implementation

You have to know the upper bound of growth and allocate

memory accordingly. If the array if full and there is

another push operation then you encounter an exception.

Linked List based Stack Implementation
Can we implement a stack using a Linked List? Yes!

Do not have to worry about the size when the stack grows.

Sky (i.e. the entire memory pool) is the limit.

Top of the stack = head of the linked list

Bottom of the stack = tail of the linked list

Push = add a new head

Pop = remove the head

Now, push and pop will take O(1) time.

However, size () will take O(n) time

A

AB

ABD

A

A
B

A
B
D

top

top

top

push A

push B

push D

HEAD

HEAD

HEAD

The Queue ADT

Recall the waiting list for courses during registration for

courses? When a seat opens up, the first one who joined

the waiting list is the first to get a chance to add to the

course.

This is a queue, works on the first in first out principle.

Two access point: front and rear

Other examples are: Call centers, printer queue, etc

(Taken from http://jcsites.juniata.edu/faculty/kruse/cs240/queues)

The queue ADT supports two main update methods:

Enqueue (e) Adds element e to the rear

Dequeue () Removes and returns the first element

 from the front.

Other useful methods are

First ()

Size ()

Empty ()

The obvious implementation uses an array. After several

enqueue and dequeue operations, both ends will drift.

Queue invariants

Acyclic structure

Fists In First Out Property

Array based implementation of queue

public class Queue {
 public String arr[];
 int maxSize;
 int front, rear, numberofItems = 0;

public Queue (int n){
maxSize = n
arr = new String[maxSize]
}

public void enqueue (String str) {
 if (numberofItems + 1 <= maxSize){

array[rear] = input;
 rear++;
 numberofItems++} else {
 System.our.println(“Sorry, the Queue is Full”)
 }
 }

public void dequeue () {
 if (numberofItems > 0){
 System.our.println(arr[front] + “Was Removed”);
 front++;
 numberofItems--} else {
 System.our.println(“Sorry, the Queue is Empty”)
 }
 }

public static void main(String[] args){

 Queue myQueue = new Queue(8);

 myQueue.enqueue(“alice”)

 myQueue.enqueue(“bob”);

 myQueue.enqueue(“clara”)

 myQueue.dequeue();

 etc etc.

}

Notice any problem with Space management? How will

you limit the queue within the allotted space?

Observe the cyclic structure

Possible error conditions

1. Dequeue from an empty buffer

 if (numberofItems > 0){

 Normal dequeue action

 } else {

 System.out.println{“Sorry, the queue is empty’}

Also, front must be incremented modulo maxSize

2. Enqueue into a full buffer

if (numberofItems < maxSize){

 Normal enqueue action

 } else {

 System.out.println{“Sorry, the queue is full”}

Also, rear must be incremented modulo maxSize

