
What is a Graph?  

A graph G consists of a set of nodes (also called 

vertices) V, and a set of edges E, each edge 

connecting a pair of nodes in V. Numerous real-life 

problems can be represented using graphs. 

 

The Seven Bridges of Königsberg  

 

 

 

Is it possible to walk along a route that crosses each 

bridge exactly once? 



 

Problem proposed by Euler 

 

 

 

Such a path is known as Euler path  

Suppose there is such a path.  

 

Then there is a starting point and there is an end point.  

For every intermediate edge v, there must be an equal 

number of incoming and outgoing edges.  

 

Is it true for the bridge graph? 

 



 

Friendship in Social network  

 

 

 

Registrar’s graph for Exam Scheduling 

 
 

 
 
Each node is a course, and an edge between nodes A 

and B denote that some student is taking both A and B 
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Classification of Graphs 

Undirected vs. Directed 

 

 

Simple graph vs. multi-graph:  

A multi-graph allows multiple edges between any given 

pair of nodes 

 

  



Weighted graph 

 

 

 
An edge between vertices u and v is denoted by (u, v) 



Graph ADT 

 

Partial list of methods 

Vertices(), NumberVertices() 

Edges(), NumEdges(), Degree() 

Outdegree(v), Indegree(v) {for directed graphs) 

OutgoingEdges(), IncomingEdges() 

InsertVertex(x), InsertEdge(u,v,x) 

RemoveVertex(x), RemoveEdge(e) 

 

 

How efficiently the graph can be stored and these 

methods can be computed, will depend on the data 

structure used to represent the graph.



Data Structure for graphs 

 
Edge list with n nodes, m edges 

 
 
      List of nodes  List of edges 
 
 

Store each list as a doubly linked list. 

Takes up O(n+m) space. 
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Adjacency Matrix 

 

 
 
Needs O(n2) space to store the graph 

 

With sparse graphs (graphs that do not have too many 

edges), there may be “too many” zeroes in the matrix. 

Dense graphs have many more edges. 

 

Question. What is the smallest number of edges in a   

connected graph of n vertices? What is the maximum 

number of edges?
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Adjacency List 

 

 
 
 
Each node maintains a linked list of its neighbors.  
 
Class Hierarchy 
 
 

 
 

Uses an array of linked lists             Uses a 2D array  
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Class AbstractGraph 
 
Data 

boolean directed,  

int numV 

True if it is a directed graph 

Number of vertices 

Constructor 

public AbstractGraph (int 

numV, boolean directed 

Constructs an empty graph 

with numV vertices, and 

makes it directed / 

undirected 

Methods 

int getNumV 

boolean isDirected 

loadEdgesFromFile(Scanner ..) 

createGraph(,,,,,,) 

 

Gets numV 

True if the graph is directed 

Load edges from file 

Create the graph 

 
 
For dense graphs m or |E| (number of edges) is O (n2) 

For sparse graphs, m << n2, so we assume m = O(|V|) 

 

The efficiency of a method depends on the nature of the 

graph and the data structure used for that graph. 

 

 

 



Consider an operation as follows 

 

1. For each vertex u 

2.  For each vertex v adjacent to u 

3.   Do something with edge (u, v) 

 

Example:   

• Count the number of edges, or  

• Find the edge with the minimum weight 

 

Using adjacency list representation, Step 1 takes O(n) 

time and for each node u Step 2 takes O(Eu) time, where 

Eu= the edges incident on vertex u.  The combined time 

will be O(m), where m = total number of edges (Why is 

this true? Take any graph as an example) 

 

Using adjacency matrix representation, for each node u, 

Step 2 also takes also takes O(n) time, so the overall 

algorithm takes O(n2) time.



Graph traversal 

Graph traversal is a systematic way of visiting all the 

vertices of a graph. There are two kinds of traversals: 

Bread-First-Search (BFS) and Depth-First-Search (DFS) 

 

Breadth-First-Search  
 

Given a starting node v, the idea is to first visit all nodes 

at distance 1 from v, then visit all nodes at distance 2 

from v, then visit all nodes at distance 3 from v, and so 

on. The implementation uses a queue as shown below: 

 

Put v into an empty queue Q; 

While Q is not empty { 

 Remove the head u of Q;  

 Mark u as visited; 

 Enqueue all unvisited neighbors of u 

} 

 



Example 

 
 
 
 
 
 
 
 



 
BFS traversal generates a BFS tree with the starting 

node as the root. Each node becomes the “parent” of its 

unvisited neighbors that it adds to the queue. 

 

 

 
 
 
 

Here 0 is the parent of 1, 3 

1 is the parent of 2, 4, 6, 7 

2 is the parent of 8, 9, and so on. 
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Applications of Breadth-First Tree 
 

Find the shortest path from one node to another node.  

(Heard about “six degrees of separation?”) 

 

Computing the routing table in a network 

 

Find the diameter of a graph 

 

Broadcast a message in a graph 

 

In directed graphs, one can check if a graph is strongly 

connected (i.e., whether there is exists a path between 

each pair of nodes)



Depth-First-Search (DFS) 

 

Given a starting node v, the idea is to first visit one 

neighbor u, u’s unvisited neighbor w, w’s unvisited 

neighbor x, and so on until you can progress no further. 

Then retract and visit another unvisited neighbor of the 

last visited node. Continue until all nodes are visited.  

The implementation uses a stack as shown below: 

 

Put v into an empty stack S; 

While Q is not empty { 

 Peek at the top u of S;  

 Mark u as visited; 

 If u has an unvisited neighbor w  

  then push w into S  

  else pop S 

} 

 

 



Example 
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DFS traversal generates a DFS tree. A visited node that pushes 

a neighbor into the stack becomes the parent of that neighbor. 

 

So how will the DFS tree look like?  

 

 

 

 

For directed graphs, such tree constructions have to 

follow the edge directions (i.e., each tree edge must be 

in the same direction as in the original graph) 
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Applications of Depth-First Tree 
 

Finding a path from one node to another (for both 

directed and undirected graphs). 

 

Detecting a cycle in a directed graph 

 

 

Spanning tree 
 

A spanning tree of a Graph G is a sub-graph that 

connects all the vertices with the minimum possible 

number of edges.  

 There can be many spanning trees of a graph G. 

Both BFS tree and DFS tree are spanning trees of G. 

 



 

 

A graph G and three spanning trees of it  

(with 0 as the root) 
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Minimum Spanning Tree (MST) 
 
In a weighted graph, computing a minimum spanning 

tree is an important problem.  The weight of a spanning 

tree is the sum of the weights of all of the tree edges. Of 

all the spanning trees, the one with the smallest weight 

is the minimum spanning tree. 

 

 

Two well-known algorithms for computing MST are 

 

1. Kruskal’s Algorithm  

2. Prim’s Algorithm  
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Kruskal's algorithm  
 
 
1. Create an empty graph T with the vertices as G, but 

without any edges.  

2. Form a priority queue Q with all the edges of G (a 

smaller weight has higher priority) 

3. While number of edges in T < n-1  

 Remove edge (u, v) from Q       

 If u and v are not connected, then add (u, v) to T. 

 

Follow the example in the class.



 

Prim's algorithm  
 

1. Start with an arbitrarily chosen single vertex. 

2. Grow the tree by one edge at a time:  

Find the minimum weight outgoing edge (use a priority 

queue for this) and add it to the tree, until no outgoing 

edge is left.  

 

(An edge is outgoing if it connects a node in the tree to another 

node not yet in the tree. Find such an edge with the minimum 

weight). 

 

Follow the example in the class.



Computing the shortest path 

 
Given a weighted graph, what is the shortest path from 

node u to node v (or to every other node in the garph) is 

an important question of great practical importance. 

One of the important algorithms for computing the 

shortest path is Dijkstra’s algorithm. 

 

Dijkstra’s Algorithm 

 

 
First, try to mentally compute the shortest path from A to 

every other node. 

 



Main idea of Dijkstra’s Algorithm 

Notations. D[u] = Distance from the starting node s to u 

w(u,v) = weight of the edge (u,v) 

Initially D[s] = 0, and D[v] = infinity for all v ≠ s 

Maintain a priority queue Q of all nodes with D as key 

 

while Q is not empty do 

u = Remove the node with smallest D from Q; 

for each edge (u, v) : v is in Q and u is not in Q do 

 relax; 

return the label D[v] for each node v 

 

What is relaxation? 



 


