
What is a Graph?

A graph G consists of a set of nodes (also called

vertices) V, and a set of edges E, each edge

connecting a pair of nodes in V. Numerous real-life

problems can be represented using graphs.

The Seven Bridges of Königsberg

Is it possible to walk along a route that crosses each

bridge exactly once?

Problem proposed by Euler

Such a path is known as Euler path

Suppose there is such a path.

Then there is a starting point and there is an end point.

For every intermediate edge v, there must be an equal

number of incoming and outgoing edges.

Is it true for the bridge graph?

Friendship in Social network

Registrar’s graph for Exam Scheduling

Each node is a course, and an edge between nodes A

and B denote that some student is taking both A and B

A

B C

D

E

CS 2230

CS 2210

Classification of Graphs

Undirected vs. Directed

Simple graph vs. multi-graph:

A multi-graph allows multiple edges between any given

pair of nodes

Weighted graph

An edge between vertices u and v is denoted by (u, v)

Graph ADT

Partial list of methods

Vertices(), NumberVertices()

Edges(), NumEdges(), Degree()

Outdegree(v), Indegree(v) {for directed graphs)

OutgoingEdges(), IncomingEdges()

InsertVertex(x), InsertEdge(u,v,x)

RemoveVertex(x), RemoveEdge(e)

How efficiently the graph can be stored and these

methods can be computed, will depend on the data

structure used to represent the graph.

Data Structure for graphs

Edge list with n nodes, m edges

 List of nodes List of edges

Store each list as a doubly linked list.

Takes up O(n+m) space.

A

B C

D

E

p

q

r
s

t

A

B

C

D

E

p

q

r

s

t

u

u

Adjacency Matrix

Needs O(n2) space to store the graph

With sparse graphs (graphs that do not have too many

edges), there may be “too many” zeroes in the matrix.

Dense graphs have many more edges.

Question. What is the smallest number of edges in a

connected graph of n vertices? What is the maximum

number of edges?

A

B C

D

E

0 1 0 1 0
1 0 1 0 0
0 1 0 1 1

1 0 1 0 1
0 0 1 1 0

1 = true, 0 = false

A

A

B

B

C

C

D

D

E

E

Adjacency List

Each node maintains a linked list of its neighbors.

Class Hierarchy

Uses an array of linked lists Uses a 2D array

A

B C

D

E

A

B

C

D

E

B

B

D

D

D

C

C

C

A

A

E

E

Graph

AbstractGraph

ListGraph MatrixGraph

Class AbstractGraph

Data

boolean directed,

int numV

True if it is a directed graph

Number of vertices

Constructor

public AbstractGraph (int

numV, boolean directed

Constructs an empty graph

with numV vertices, and

makes it directed /

undirected

Methods

int getNumV

boolean isDirected

loadEdgesFromFile(Scanner ..)

createGraph(,,,,,,)

Gets numV

True if the graph is directed

Load edges from file

Create the graph

For dense graphs m or |E| (number of edges) is O (n2)

For sparse graphs, m << n2, so we assume m = O(|V|)

The efficiency of a method depends on the nature of the

graph and the data structure used for that graph.

Consider an operation as follows

1. For each vertex u

2. For each vertex v adjacent to u

3. Do something with edge (u, v)

Example:

• Count the number of edges, or

• Find the edge with the minimum weight

Using adjacency list representation, Step 1 takes O(n)

time and for each node u Step 2 takes O(Eu) time, where

Eu= the edges incident on vertex u. The combined time

will be O(m), where m = total number of edges (Why is

this true? Take any graph as an example)

Using adjacency matrix representation, for each node u,

Step 2 also takes also takes O(n) time, so the overall

algorithm takes O(n2) time.

Graph traversal

Graph traversal is a systematic way of visiting all the

vertices of a graph. There are two kinds of traversals:

Bread-First-Search (BFS) and Depth-First-Search (DFS)

Breadth-First-Search

Given a starting node v, the idea is to first visit all nodes

at distance 1 from v, then visit all nodes at distance 2

from v, then visit all nodes at distance 3 from v, and so

on. The implementation uses a queue as shown below:

Put v into an empty queue Q;

While Q is not empty {

 Remove the head u of Q;

 Mark u as visited;

 Enqueue all unvisited neighbors of u

}

Example

BFS traversal generates a BFS tree with the starting

node as the root. Each node becomes the “parent” of its

unvisited neighbors that it adds to the queue.

Here 0 is the parent of 1, 3

1 is the parent of 2, 4, 6, 7

2 is the parent of 8, 9, and so on.

0

1

2

3

4

5

6

7

8
9

tree edges

non-tree edges
or cross edges

Applications of Breadth-First Tree

Find the shortest path from one node to another node.

(Heard about “six degrees of separation?”)

Computing the routing table in a network

Find the diameter of a graph

Broadcast a message in a graph

In directed graphs, one can check if a graph is strongly

connected (i.e., whether there is exists a path between

each pair of nodes)

Depth-First-Search (DFS)

Given a starting node v, the idea is to first visit one

neighbor u, u’s unvisited neighbor w, w’s unvisited

neighbor x, and so on until you can progress no further.

Then retract and visit another unvisited neighbor of the

last visited node. Continue until all nodes are visited.

The implementation uses a stack as shown below:

Put v into an empty stack S;

While Q is not empty {

 Peek at the top u of S;

 Mark u as visited;

 If u has an unvisited neighbor w

 then push w into S

 else pop S

}

Example

0
30

3
0

2

3
0

2
9

3
0

2

3
0

2
8

3
0

2

3
0

2
1

3
0

2
1
7

3
0

2
1
7
6

3
0

2
1
7
6
4

3
0

2
1
7
6
4
5

DFS traversal generates a DFS tree. A visited node that pushes

a neighbor into the stack becomes the parent of that neighbor.

So how will the DFS tree look like?

For directed graphs, such tree constructions have to

follow the edge directions (i.e., each tree edge must be

in the same direction as in the original graph)

0

1

2

3

4

5

6

7

8
9

tree edges

non-tree edges
or cross edges

Applications of Depth-First Tree

Finding a path from one node to another (for both

directed and undirected graphs).

Detecting a cycle in a directed graph

Spanning tree

A spanning tree of a Graph G is a sub-graph that

connects all the vertices with the minimum possible

number of edges.

 There can be many spanning trees of a graph G.

Both BFS tree and DFS tree are spanning trees of G.

A graph G and three spanning trees of it

(with 0 as the root)

1 2

0

43

1 2

0

43

1 2

0

43

1 2

0

43

G

Minimum Spanning Tree (MST)

In a weighted graph, computing a minimum spanning

tree is an important problem. The weight of a spanning

tree is the sum of the weights of all of the tree edges. Of

all the spanning trees, the one with the smallest weight

is the minimum spanning tree.

Two well-known algorithms for computing MST are

1. Kruskal’s Algorithm

2. Prim’s Algorithm

0

1

2

3

7

8

10

20

15

90

5010

25

0

1

2

3

7

8

10

20

15

90

5010

25

Graph G Minimum Spanning Tree of G

Kruskal's algorithm

1. Create an empty graph T with the vertices as G, but

without any edges.

2. Form a priority queue Q with all the edges of G (a

smaller weight has higher priority)

3. While number of edges in T < n-1

 Remove edge (u, v) from Q

 If u and v are not connected, then add (u, v) to T.

Follow the example in the class.

Prim's algorithm

1. Start with an arbitrarily chosen single vertex.

2. Grow the tree by one edge at a time:

Find the minimum weight outgoing edge (use a priority

queue for this) and add it to the tree, until no outgoing

edge is left.

(An edge is outgoing if it connects a node in the tree to another

node not yet in the tree. Find such an edge with the minimum

weight).

Follow the example in the class.

Computing the shortest path

Given a weighted graph, what is the shortest path from

node u to node v (or to every other node in the garph) is

an important question of great practical importance.

One of the important algorithms for computing the

shortest path is Dijkstra’s algorithm.

Dijkstra’s Algorithm

First, try to mentally compute the shortest path from A to

every other node.

Main idea of Dijkstra’s Algorithm

Notations. D[u] = Distance from the starting node s to u

w(u,v) = weight of the edge (u,v)

Initially D[s] = 0, and D[v] = infinity for all v ≠ s

Maintain a priority queue Q of all nodes with D as key

while Q is not empty do

u = Remove the node with smallest D from Q;

for each edge (u, v) : v is in Q and u is not in Q do

 relax;

return the label D[v] for each node v

What is relaxation?

