
Binary Search Tree and AVL Tree
	
	
	
	

	
	
	
	

Is this a binary search tree?
	
	
	

• Is this the only BST with the months of the year?	

• Can you draw three binary search trees with

the keys 12, 41, 9, 55, 36?

AVL trees

(Inventors G.M. Adelson-Velsky and E.M. Landis)

An AVL tree satisfies the height-balance property:

For any tree rooted at an internal node n, the heights

of the left and right subtrees differ by at most 1.

(a)(d) satisfy height-balance property, (b) and (c) don’t

Examples of AVL Trees

Valid AVL trees - satisfy height-balance property

44

17

32

78

8850

48 62

0

0
0

0

0

0 0 0

0
1 1

1 1

4

2

2

3

T1

T4

T3T2

h+3
h+2

h+1

h-1

h+1

h

h

Height of an AVL tree

Is h= O(log n) for AVL trees too? Yes! Why?

Let n(h) be the smallest number of internal (i.e. non-

leaf) nodes of height h in an AVL tree. Then

n(1) = 1,n(2) = 2 , and

n(h) = n(h −1)+ n(h − 2)+1

So, n(h) > 2.n(h − 2), and n(h) > 2i.n(h − 2i).

Substitute i = h −1
2

. This leads to

n(h) > 2
h−1

2.n(h − (h −1)) = 2
h−1

2

Therefore, logn(h) > h −1
2

So h <1+ 2 logn(h) , and the number of leaves ≤

1+number of internal nodes

.

Insertion algorithms for AVL Trees

1. First insert the key w into the BST. If it maintains

the height-balance property then fine. Otherwise

we need to rebalance it.

3. Re-balance the tree by performing appropriate

rotations as shown below to repair the tree.

T1 T2

T3

x

y

T1

T2 T3

x

y
right rotation

Left rotation

Rotation Operations for rebalancing

Starting from w, travel up and find the first

unbalanced node. Let z be the first unbalanced

node, y be the child of z that comes on the path from

w to z, and x be the grandchild of z that comes on

the path from w to z.

There can be four possible cases that need to be

handled as x, y and z can be arranged in 4 ways.

Following are the possible 4 arrangements:

Four different cases

1. y = left child of z, x = left child of y (Right rotation)

2. y = left child of z, x = right child of y (Left Right)

3. y = right child of z, x = right child of y (Left rotation)

4. y = right child of z, x = left child of y (Right Left)

y = left child of z, x = left child of y (Right rotation)

y = left child of z, x = right child of y (Left Right)

y = right child of z, x = right child of y (Left rotation)

y = right child of z, x = left child of y (Right Left)

Here is an example

For the delete operation, follow the usual delete

algorithms for BST and then, if needed, restore the

height-balance property.

44

17

32

78

8850

62

54

48

inserted

z

y

x

44

17

32

78

88

50

62

5448

z

y

xleft rotate (50)

44

17

32 78

88

50

62

5448

z

y

x

right rotate (78)

Red-Black trees

Another approach to keeping a binary search tree

balanced. Contains two types of nodes: red and

black. By definition, all null entries (non-existent

children) are black. Maintains three invariants:

1. The root is always black.

2. A red node always has black children.

3. The number of black nodes in any path from the

root to a leaf (a. k. a. black depth) is the same.

The following are NOT red-black trees. Why?

	

The following ARE valid red black trees.

1. Why do we need to learn about this?

Because h ≤ 2 log (n+1): It guarantees search,

insert, delete in O(log n) time.

2. But isn’t that true for AVL trees too?

Yes, but in AVL trees, there are more rotations on an

average (up to O(log n) in the worst case) during

insert operations. In contrast Red-Black trees need

at most one rotation per insertion and at most two

rotations for deletion, so they work better with

frequent insert and delete operations.

5

10

15 5

10

15

3. Search in Red-black trees

For AVL trees, h ≤ 1.44 log n

For RB trees, h ≤ 2 log(n)

So lookup is faster in AVL trees, particularly for

large n, but it comes at the expense of slower

insertion and deletion times.

3. The TreeMap class

TreeMap class implements the Map interface using

a Red-Black tree. The binary tree sorts the keys in

the ascending order. The HashMap class also

implements a Map interface, but is an unordered

collection of key-value pairs.

Inserting a node

Follow the normal rules of insertion in a BST. Let x =

node to be inserted, and y = parent of x. Make the

new node x a red node. Two sample cases:

Case 1. The sibling s of y is black

Case 2. The sibling s of y is red

.

If 30 is the root, then color it black.

