
Binary Search Tree and AVL Tree 
	  
	  
	  
	  

	  
	  
	  
	  

Is this a binary search tree? 
	  
	  
	  

• Is this the only BST with the months of the year?	  
 

• Can you draw three binary search trees with 

the keys 12, 41, 9, 55, 36? 

 

 



AVL trees 

(Inventors G.M. Adelson-Velsky and E.M. Landis) 

 

An AVL tree satisfies the height-balance property:  

 

For any tree rooted at an internal node n, the heights 

of the left and right subtrees differ by at most 1. 

 

 
 

 

(a)(d) satisfy height-balance property, (b) and (c) don’t 

 
  



 
Examples of AVL Trees 
 

 
 
 

 
 
 
 
Valid AVL trees - satisfy height-balance property 
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Height of an AVL tree 
 

Is h= O(log n) for AVL trees too? Yes! Why? 
 
 
Let n(h) be the smallest number of internal (i.e. non-

leaf) nodes of height h in an AVL tree. Then 

 
n(1) = 1,n(2) = 2 , and  
 
n(h) = n(h −1)+ n(h − 2)+1 
 

So, n(h) > 2.n(h − 2), and n(h) > 2i.n(h − 2i). 

Substitute i = h −1
2

. This leads to 

n(h) > 2
h−1

2.n(h − (h −1)) = 2
h−1

2   

Therefore, logn(h) > h −1
2

 

So h <1+ 2 logn(h) , and the number of leaves ≤ 

1+number of internal nodes 

 

. 



Insertion algorithms for AVL Trees 
 

1. First insert the key w into the BST. If it maintains 

the height-balance property then fine. Otherwise 

we need to rebalance it. 

 

3. Re-balance the tree by performing appropriate 

rotations as shown below to repair the tree. 
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Rotation Operations for rebalancing 

 
Starting from w, travel up and find the first 

unbalanced node. Let z be the first unbalanced 

node, y be the child of z that comes on the path from 

w to z, and x be the grandchild of z that comes on 

the path from w to z. 

 
There can be four possible cases that need to be 

handled as x, y and z can be arranged in 4 ways. 

Following are the possible 4 arrangements: 

 

 

Four different cases 

1.  y = left child of z, x = left child of y (Right rotation) 

2.  y = left child of z, x = right child of y (Left Right) 

3.  y = right child of z,  x = right child of y (Left rotation) 

4.  y = right child of z, x = left child of y (Right Left) 

 

 

 

 



 

 
 

y = left child of z, x = left child of y (Right rotation) 
 
 
 
 

 

 
 

y = left child of z, x = right child of y (Left Right) 
  



 
 
y = right child of z,  x = right child of y (Left rotation) 

 
 
 

 
 

y = right child of z, x = left child of y (Right Left) 
 
 

 

 

 



Here is an example 

 

 

 
For the delete operation, follow the usual delete 

algorithms for BST and then, if needed, restore the 

height-balance property.
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Red-Black trees 

 

Another approach to keeping a binary search tree 

balanced. Contains two types of nodes: red and 

black. By definition, all null entries (non-existent 

children) are black. Maintains three invariants: 

 

1. The root is always black. 

2. A red node always has black children. 

3. The number of black nodes in any path from the 

root to a leaf (a. k. a. black depth) is the same. 

 

The following are NOT red-black trees. Why? 

 

	   

 



The following ARE valid red black trees. 

 

 

 
 
1. Why do we need to learn about this? 

 

Because h ≤ 2 log (n+1): It guarantees search, 

insert, delete in O(log n) time. 

 

2. But isn’t that true for AVL trees too? 

 

Yes, but in AVL trees, there are more rotations on an 

average (up to O(log n) in the worst case) during 

insert operations. In contrast Red-Black trees need 

at most one rotation per insertion and at most two 

rotations for deletion, so they work better with 

frequent insert and delete operations. 
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3. Search in Red-black trees 

 

For AVL trees, h ≤ 1.44 log n 

For RB trees, h ≤ 2 log(n) 

So lookup is faster in AVL trees, particularly for 

large n, but it comes at the expense of slower 

insertion and deletion times. 

 

3. The TreeMap class 

 

TreeMap class implements the Map interface using 

a Red-Black tree. The binary tree sorts the keys in 

the ascending order. The HashMap class also 

implements a Map interface, but is an unordered 

collection of key-value pairs.  

  



Inserting a node 
 
Follow the normal rules of insertion in a BST. Let x = 

node to be inserted, and y = parent of x. Make the 

new node x a red node. Two sample cases: 

 

Case 1. The sibling s of y is black 

 
 

Case 2. The sibling s of y is red 

 

. 

If 30 is the root, then color it black. 


