
The Set ADT

List vs. SET

Set = Unordered collection of elements – no duplicates.

{1, 3, 8} is the same as {3, 8, 1}

List = Ordered collection of elements, does not care

about duplicates.

Main methods in the Set ADT

Add (e) Adds e to the set (if not present)

Remove (e) Removes e if it is present

Contains (e) Checks if the set contains e

Size() Returns the number of elements

isEmpty Is the set empty?

Also, set union (S ∪T), set intersection (S ∩T) and set

difference (i.e. subtraction) (S −T) are important

operations. Java.util.Set interface provides the

following methods to support these operations. When

executed on a set S,

• addAll(T) implements S ∪T

• retainAll(T) implements S ∩T

• removeAll(T) implements S −T

A multi-set (also called a bag) is a generalization of set

-- it allows duplicates.

Sorted set is an extension of set, when elements come

from a comparable class

Binary Search Tree
An ordered map is one in which the keys have a total order,

just like in a heap. You can insert, find, and delete entries, just

as with a hash table. But unlike a hash table, you can quickly

find the entry with minimum or maximum key, or the entry

nearest another entry in the total order (i.e. successor and

predecessor). A simple implementation of an ordered map is a

binary search tree.

Two invariants hold for every node X

 1. Every key in its left subtree is ≤ X

 2. Every key in its right subtree is > X

Observation.

In-order traversal of a BST leads to a sorted array

Lookup time

Depends on the height of the tree. For a balanced tree,

it is O(log n). Here is a worst case

	
	
	
The height is O(n), so is the search time. For efficient

lookup, we need a balanced binary tree.

20

16

8

10

12

11

Insertion of Keys

Where would you look for the key to be inserted? That will

guide you to the location where you will insert the new key.

 	

Insert & Delete Key

Delete key K

Three different cases of removal of node n with key K.

Case 1. If K is a leaf node then just detach the node with

key K from its parent

Case 2. If node n has one child, move n's child up to

take n's place. Node n's parent becomes the parent of n's

child, and n's child becomes the child of n's parent.

Case 3. Let x be the node with the smallest key in n's

right subtree. Remove x; since x has the minimum key

in the subtree (i.e., its successor of n) x has no left child

and is easily removed. Replace n by x. x has the key

closest to k that isn't smaller than k, so the binary search

tree invariant still holds

See the example.

[You can also pick the largest key from the left subtree, since

the node containing such a key will not have a right child]

Successor of node x

The successor of the largest key is NIL. Otherwise,

consider two cases.

Case 1. If node x has a non-empty right subtree, then x’s

successor is the minimum in the right subtree of x.

Case 2. If node x has an empty right subtree then:

 Node x’s successor y is the node that x is the

 predecessor of (x is the maxim in y’s left subtree).

 Therefore, x’s successor y, is the lowest ancestor of

 x whose left child is also an ancestor of x.

29

12 25

4 15 30

2 13 27

3 14

18

23

2417

x

y = successor(x)

Problem with unbalanced search trees

If you create a binary search tree by inserting the given

keys in a random order, then with high probability the

tree will have height O(log n), and operations on the

tree will take O(log n) time.

Explore what happens if the keys are inserted in a

sorted order 2, 3, 5, 7, 10 into an empty tree.

It is important to devise algorithms that keep a BST

balanced.

AVL tree is a binary search tree that can balance itself.

