
Hash Tables

A map (also called dictionary) is an ADT that contains

key-value pairs. It helps retrieve the value using the key

as the “address.”

As an example, consider a set of two-letter words. You

want to build a dictionary so that you can look up the

definition of any two-letter word, very quickly. The two-

letter word is the key that addresses the definition of the

word.

Key Definition

am First	
 person	
 singular	
 number	
 indicative	
 of	
 be,	
 also,	
 before	
 noon	

an The	
 form	
 of	
 ‘a’	
 before	
 a	
 vowel	
 sound	

… 	

be To	
 exist	
 or	
 to	
 live	

by (Preposition)	
 near	
 or	
 next	
 to	
 	

…

More applications of maps

(University record)

 Key = student id.

 Value = information about the student

(Social media)

 Key = user name / email id.

 Value = user information.

So, how will you implement a dictionary of all two-letter

words? Take an array with 26x26= 676 elements. Each

two-letter will map to a unique index of the array. The

content of that array index will be the definition.

Is this scalable? NO. Consider large words …

Hash tables implement dictionaries

Number of keys = n

Array size = N, and

The number of possible keys M >> N > n

A hash function maps a huge set of keys into N buckets

by applying a compression function, called a hash

function h

 h (key) = array index (in the	
 dictionary).

	

Maps or dictionaries are associative arrays, where

searching is based on the key, rather than an index to

the array storing the values.

hash
code

Set
of

keys

compression
function

bucket
array

hash function

key indexinteger

(Source: Wikipedia)

Hash codes

Java relies on 32-bit hash codes, so for the base types

byte, short, int, char, we can get a hash code by

casting its value x0 x1 x2 ... xn−2 xn−1 	
 to the type int,

and using the integer representation.

key K h(key)

For a string object s = s[0] s[1] … s[n-1], the following

method is used to compute the hash code h(s):

h(s) = s[0]*31^(n-1)+s[1]*31^(n-2)+ ... + s[n-1]

This is called polynomial hash code.

When using a hash table to implement a map, for

consistency, equivalent keys must map to the same

bucket. So,

if x.equals(y) then x.hashCode == y.hashCode

Compression functions

Let us get back to the dictionary of all 2-letter words.

There are 26 x 26 = 676 possible keys, but perhaps 70

possible meaningful words. Let us convert each 2-letter

word xy to an integer i as follows (using f(a) = 0, f(b) =

1, f(c) = 2, …, f(z) = 25):

 i = 26.f(x) + f(y)

Division method. If we plan on storing these words

in an array of size 100 (i.e. N=100) then a simple

compression function is mod 100 (if N = bucket array

size, then use mod N). Thus, the integer i will be placed

in location i mod N of the hash table

MAD (Multiply-Add-Divide) method

 Map i to [(a.i + b) mod p] mod N

Here p is a prime number and a, b are random integers

chosen from the interval [0..p-1]

Depending on the value of n/N, it works in most cases,

but what if there are two words xy and pq such that

h(xy) = h(pq)? This is called collision. Computing the

compression function for collision avoidance is a form of

black art. Use a function so that two different keys do not

map to the same index of the hash table.

Hash table operations

A hash table supports at least three operations:

insert(key, value)

 Compute the key's hash code.

 Compress it to determine the entry's bucket.

 Insert the entry (key and value together)

 into that bucket (and deal with collision)

 find(key)

 Hash the key to determine its bucket.

 Search the entry with the given key.

 If found, return the entry, else, return null.

delete(key)

 Hash the key to determine its bucket.

 Search the list for an entry with the given key.

 Remove it from the list if found.

 Return the entry or null if not found.

Collision avoidance

Hashing with separate chaining

(Also called Chain hashing)

Each bucket entry references a linked list of entries,

called a chain. If several keys are mapped to the same

bucket, their definitions all reside in that bucket's linked

list.

But how do we know which definition corresponds to

which word? The answer is that we must store each key

in the table along with its definition (i.e. both key and

value).

0 1 2 3 4 5 6 7 8 9 10

Open addressing

Linear Probing

Let i be the hash function of an entry X, but assume that

slot i of the hash table is not free, since it has been

allocated to entry Y (so that is a collision). Try looking

for slots i+1, i+2, i+3, … until a free slot is found.

Quadratic Probing

In case of a collision at slot i, try looking for slots i+12,

i+22, i+32, … until a free slot is found.

i

Key

hash

Typically we expect O(1) time performance for each of the

operations. This may not be feasible if the load factor n/N is

large (> 0.75) or there are too many collisions. The

performance can slowly degenerate towards O(n).

Resizing the hash table

It is not always possible to foresee the number of entries we'll

need to store. So, what to do when the load factor increases?

One option is to enlarge the hash table when the load factor

becomes too large. Allocate a new array (typically at least

twice as long as the old), and then walk through all the entries

in the old array and “rehash” them into the new.

[Note: you	
 just	
 can’t	
 copy	
 the	
 entries	
 of	
 the	
 old	
 array	
 into	

the	
 slots	
 of	
 the	
 new	
 array,	
 because	
 the	
 compression	

functions	
 of	
 the	
 two	
 arrays	
 will	
 be	
 different.	
 	
 You	
 have	
 to	

rehash	
 each	
 entry	
 individually.]

For best performance, hash codes often need to be

designed specially for each new object.

Complexities of insert, delete, search

Initially all empty buckets contain “null”. To insert a key

K, first find if it K already exists. If so, the new value will

replace the old value. Otherwise insert it into a blank

slot. To delete a key, first find it, and then replace it by

null.

Case 1. Chain hashing

Needs additional space. Each bucket has to maintain an

independent linked list. The lengths of these lists should

be as small as possible otherwise search complexity will

increase. If the space is tight, this can scale up to O(n).

Case 2. Open addressing with linear probing

As n/N increases, insert and search takes more time.

What happens when you use open addressing and

delete the key Y (see figure above)? Will it erase the

link 10 also? No.

So, to delete a key, simply mark it as “defunct” that will

preserve the link. A new key can be inserted into the

defunct slot only if it does not exist at all (for this look

beyond the defunct entry).

6 10

X

6 10

X

W TZY

Y

index 6

10

Key X

Key X

Computing the hashCode of a given key should be

fast, while minimizing the probability of collision. For a

string s, the hash is computed as follows:

 int hash = 0;

 for (int i = 0; i < s.length(); i++)

 hash = (31 * hash + s.charAt(i)) % N

Why can it be computed fast? Because it avoids the use

of a multiplier (which is slow)! How?

Horner’s	
 Rule	
 for	
 computing	
 polynomials	

h(s) = s[0]*31^(n-1)+s[1]*31^(n-2)+ ... + s[n-1]

	

y0	
 =	
 s[0]	
 	

y1	
 =	
 31*y0	
 +	
 s[1]	

y2	
 =	
 31*y1	
 +	
 s[2]	

y3	
 =	
 31*y2	
 +	
 s[3]	

…	
 …	
 …	

h(s)	
 =	
 yn-­‐1	
 =	
 31*yn-­‐2	
 +	
 s[n-­‐1]	

	

Example. Consider the following keys to be entered

into a hash table, first into a table of size 5.

“Tom”, “Dick”, “Harry”, “Sam”, “Pete”

Key hashCode() hashCode()%5

Tom 84274 4

Dick 2129869 4

Harry 69496448 3

Sam 82879 4

Pete 2484038 3

The load factor is 100%. Try with a larger table of size 11

Tidbits

If	
 you	
 use	
 hashCode()%N	
 as	
 compression	
 function,	

then	
 note	
 that	
 it	
 may	
 sometimes	
 return	
 a	
 negative	

value	
 (when	
 the	
 argument	
 is	
 negative)	
 leading	
 to	
 an	

array	
 out-­‐of-­‐bound	
 exception.	
 Add	
 N	
 to	
 make	
 it	
 +ve.	

	

Also,	
 the	
 function	
 Math.abs(s.hashCode()%N	
 can	

return	
 a	
 negative	
 integer	
 when	
 the	
 32-­‐bit	
 argument	
 is	

10000000000…00,	
 since	
 its	
 positive	
 version	
 cannot	
 be	

represented	
 using	
 32	
 bits	
 (needs	
 33	
 bits)!	

	

One	
 way	
 out	
 is	
 the	
 following	

	

private int hash(Key key) {

 return (key.hashCode() & 0x7fffffff) % M; }

	

	

It	
 masks	
 the	
 sign	
 bit	
 and	
 converts	
 it	
 into	
 a	
 positive	

integer.	

	

Quadratic	
 probing	
 is	
 slow	
 since	
 it	
 involves	

multiplication.	
 Here	
 is	
 how	
 you	
 can	
 speed	
 it	
 up	
 to	

calculate	
 the	
 next	
 index.	

	

Initially	
 k=	
 -­‐1	

k	
 =	
 k+2	

index	
 =	
 (index	
 +	
 k)	
 %	
 hashTableSize	

	

Why	
 does	
 it	
 work?	

	

