
Pipelining

Five stages in the datapath of MIPS:

1. Fetch

2. Decode

3. EXecute (or address calculation)

4. Memory access

5. Result Write back

Instructions take 3-5 cycles to complete

execution. How to overlap the operation of the

different stages and maximize the througput?

Ideal Instruction Pipeline

Clock cycles

1 2 3 4 5 6 7 8 9 10

1 F D X M W

2 F D X M W

3 F D X M W

4 F D X M W

5 F D X M W

6 F D X M ..

The average throughput for the ideal pipeline is 1 CPI, an

improvement of nearly 400% over the previous

implementation. Real speedup will however be somewhat

less due to various types of hazards.

1. Structural hazards

2. Data hazards

3. Control hazards

Strcutural Hazard

Can we fetch an instruction (F) and read data from

the memory at the same time? For a single port

memory, the answer is NO.

1 2 3 4 5 6 7 8 9 10

1 F D X M W

2 F D X M W

3 F D X M W

4 o o o F D X M W

5 o o o F D X M

 bubbles

These bubbles (stall cycles) will appear if we use

a single-port memory to store both instructions

and data.

What is the average throughput (i.e. CPI) now?

Structural Hazards

Concurrent operations fighting for the same resource

leads to structural hazards. Examples are

1. Two simultaneous memory access operations on a

single-port memory. Note that separation of the

instruction memory from data memory resolves this

problem.

2.

1 F D X M W

2 F D X M W

What if both X and D require an adder, and there is only one

adder in the processor? Note that two separate adders will

resolve this problem.

3. What if more than one write operations are to be

performed on a register file that has only a single write

port? Insert bubbles.

Data Hazards

Example of Read-After-Write (RAW) Hazard

R1:= R2+R3 F D X M W

R4:= R1-R5 F D X M W

 (R1 used here)

The second instruction will read an old value of R1.

Solution?

1. Insert bubbles.

2. Use internal data forwarding

3. Instruction reorganization by the compiler.

More about other types of data hazards later…

(R1 updated here) *

More Examples of RAW

ADD R1,R2,R3 F D X M W

SUB R4,R1,R5 F D X M W

AND R6,R1,R7 F D X M W

XOR R8,R1,R9 F D X M W

Internal Data Forwarding

The updated value of the variable is made available very

early using special internal data paths. This will help reduce

the number of bubbles in the pipeline, and speed up the

processor.

Internal Data Forwarding

Normal path for data

 ALU ALUout

Internal forwarding path

Note that data is available in ALUout buffer just after the “X”

phase, but it is written into the register file in the M phase (or

in the W phase for the LW instruction) only.

Register
File

MUX

M U X

Example of speedup using internal data forwarding

Data forwarding does not fully resolve the problem …

LW R1, 0(R2) F D X M W

SUB R4,R1,R5 F D X M W

AND R6,R1,R7 F D X M W

OR R6,R1,R9 F D X M W

And the solution involves using bubbles too.

LW R1, 0(R2) F D X M W

SUB R4,R1,R5 F D o X M W

AND R6,R1,R7 F o D X M W

OR R6,R1,R9 o F D X M

Only 1 stall cycle is required. However, without internal data

forwarding, 2 stall cycles are necessary.

Two Design Choices

Processor

HLL Output

Program

 Control unit

1. Either the control unit can be smart, i,e. it can delay

instruction phases to avoid hazards. Processor cost

increases.

2. The compiler can be smart, i.e. produce optimized codes

either by inserting NOPs or by rearranging instructions.

The cost of the compiler goes up.

Compiler
LUALU

Instruction Reorganization by Compiler

To avoid data hazards, the control unit can insert bubbles.

As an alternative, the compiler can use NOP instructions.

Example: Compute a:= b + c; d:= e + f

LW R1,b LW R1,b

LW R2,c LW R2,c

ADD R3, R1, R2 NOP

SW a, R3 NOP

LW R1,e ADD R3,R1,R2

LW R2,f NOP

SUB R3, R1, R2 SW a,R3

SW d, R3 LW R1,e

LW R2,f

NOP

NOP

SUB R3, R1, R2

NOP

SW d, R3

Original code Code generated by a smart compiler

(Control unit remains unchanged)

Instruction Reorganization by Compiler

The compiler can further speedup by reorganizing the

instruction stream and minimizing the no of NOP’s.

Example: Compute a:= b + c; d:= e + f

LW R1,b LW R1,b

LW R2,c LW R2,c

ADD R3, R1, R2 LW R4,e

SW a, R3 LW R5,f

LW R1,e ADD R3,R1,R2

LW R2,f NOP

SUB R3, R1, R2 SW a,R3

SW d, R3 SUB R6, R5, R4

NOP

SW d, R6

NOP

Original code Code reorganized by a smart compiler

(Control unit remains unchanged)

Note the reassignment of registers

A More Refined Solution

LW R1,b LW R1,b

LW R2,c LW R2,c

ADD R3, R1, R2 LW R4,e

SW a,R3 LW R5,f

LW R1,e ADD R3, R1, R2

LW R2,f SW a,R3

SUB R3, R1, R2 SUB R6,R4,R5

SW d,R3 SW d,R6

original code after reorganization

This reorganization assumes that internal data

forwarding paths have been added. Data hazard

avoided without sacrificing speed.

