Logic Design (continued)

XOR Revisited

XOR is also called modulo-2 addition.

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

 $A \oplus B = 1$ only when there are an odd number of 1's in (A,B). The same is true for $A \oplus B \oplus C$ also.

$$\begin{array}{c}
1 \oplus A = \overline{A} \\
0 \oplus A = A
\end{array}$$
Why?

Logic Design Examples

<u>Half Adder</u>

S =	A	\bigoplus	В
-----	---	-------------	---

$$C = A.B$$

Α	В	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Full Adder

Α	В	C_{in}	5	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = A \oplus B \oplus C_{in}$$
 $C_{out} = A.B + B.C_{in} + A.C_{in}$

Question. Can you design a full adder using two half-adders (and a few gates if necessary)?

Decoders

A typical decoder has n inputs and 2ⁿ outputs.

Α	В	D3	D2	D1	D0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

A 2-to-4 decoder and its truth table

D3 = A.B

 $D2 = A.\overline{B}$

D1 = A.B

 $DO = \overline{A}.\overline{B}$

Draw the circuit of this decoder.

The decoder works per specs when (Enable = 1). When Enable = 0, all the outputs are 0.

Exercise. Design a 3-to-8 decoder.

Question. Where are decoders used?

Encoders

A typical encoder has 2^n inputs and n outputs.

DO	D1	D2	D3	Α	В
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

A 4-to-2 encoder and its truth table

$$A = D1 + D3$$

$$B = D2 + D3$$

Multiplexor

It is a many-to-one switch, also called a selector.

Control S

$$S = 1, F = B$$

Specifications of the mux

A 2-to-1 mux

Exercise. Design a 4-to-1 multiplexor using two 2-to-1 multiplexors.