Logic Design (continued)

XOR Revisited

XOR is also called modulo-2 addition.

A	B	C	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$A \oplus B=1$ only when there are an odd number of 1's in (A, B). The same is true for $A \oplus B \oplus C$ also.
$\left.\begin{array}{l}1 \oplus A=\bar{A} \\ 0 \oplus A=A\end{array}\right\} \quad$ Why?

Logic Design Examples

Half Adder

A

B

Full Adder

$S=A \oplus B \oplus C_{\text {in }}$
$C_{\text {out }}=A \cdot B+B \cdot C_{\text {in }}+A \cdot C_{\text {in }}$

Question. Can you design a full adder using two half-adders (and a few gates if necessary)?

Decoders

A typical decoder has n inputs and 2^{n} outputs.

A 2-to-4 decoder and its truth table
$D 3=A \cdot B$
$D 2=A \cdot \bar{B}$
$D 1=\bar{A} \cdot B$
$D 0=\bar{A} \cdot \bar{B}$

Draw the circuit of this decoder.

The decoder works per specs when $($ Enable $=1)$. When Enable $=0$, all the outputs are 0 .

Exercise. Design a 3-to-8 decoder.
Question. Where are decoders used?

Encoders
A typical encoder has 2^{n} inputs and n outputs.

A 4-to-2 encoder and its truth table
$A=D 1+D 3$
$B=D 2+D 3$

Multiplexor

It is a many-to-one switch, also called a selector.

Control S

$$
\begin{aligned}
& S=0, F=A \\
& S=1, F=B
\end{aligned}
$$

Specifications of the mux

A 2-to-1 mux

$$
F=\bar{S} . A+S . B
$$

Exercise. Design a 4-to-1 multiplexor using two 2-to1 multiplexors.

