
Address translation

Main memory size = 2 KB = 211

Block size = 8 bytes = 23 (So, total # of M-blocks = 28)

Cache size = 64 bytes = 26 (So, total # of C-blocks = 23)

Set size = 2, so the number of sets in cache = 4

No of sets = 4 = 22      Block size = 8 = 23

6      2       3

 Memory address

To locate an M-block in cache, check the tags

in the set  S = (M-block)  mod  (number of sets) i.e. the

index field.

  Tag      index    offset



Sample Cache Organization

    Valid tag  data

1 0 0 0 0 0 0

1 0 0 0 0 1 0

0 0 0 0 0 0 1

1 1 1 1 1 1 1

    1 bit       6 bits         64 bits

Use index to choose the set.

Check the valid bit (for invalid data or bad

initialization) and then look for a match with the tag.

Direct mapped cache Set size =1

Fully associative cache Set size = total number of

blocks in the cache

Tag search is limited within a set.

Set 0

Set 1



What about writing ?

Case 1.  Write hit

    X (store X: X is in C)

Write through Write back

 Write into C Write into C only. Update

 as well as into M M only when discarding

                                                      the block containing x

Q1.  Isn’t write-through inefficient?

Not all cache accesses are for write.

Q2. What about data consistency in write-back cache?

If M is not shared, then who cares?

x

x



Case 2.  Write miss

    X (Store X, X is NOT in C)

Write allocate Write around

Allocate a C-block to X. Write directly into

Load the block containing X bypassing C

     X from M to C.

Then write into X in C. Usually goes with

Usually goes with write back write through.

.

Question.

In write-allocate, it is important to read the entire block from

the memory into the cache. Why?

?

x



      A state-of-the-art memory hierarchy

   L1   L2

  0.5 ns*  0.75 ns* 50 ns* 1 ms

16kB+16KB 512KB-2 MB 64-256MB 40 GB

(* per 32-bit word)

Reading Operation

• Hit in L1.

• Miss in L1, hit in L2, copy from L2.

• Miss in L1, miss in L2, copy from M.

Write Hit

• Write through: Write in L1, L2, M.

• Write back

Write in L1 only. Update L2 when

discarding an L1 block. Update M

when discarding a L2 block.

Write Miss

Write-allocate or write-around
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Inclusion Property

       L1            L2

In a consistent state,

• Every valid L1 block can also be found in L2.

• Every valid L2 block can also be found in M.

Average memory access time =

(Hit time)L1 + (Miss rate)L1 x (Miss penalty)L1

(Miss penalty)L1 =  (Hit time)L2 + (Miss rate) L2 x

(Miss penalty)L2

Performance improves with additional level(s) of

cache if we can afford the cost.
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Optimal Size of Cache Blocks

Tav

Miss Miss Avg.

Penalty Rate Mem

Access

Time

   Block size  Block size    Block size

Large block size supports program locality and

reduces the miss rate.

But the miss penalty grows linearly, since more

bytes are copied from M to C after a miss.

Tav = Hit time + Miss rate x Miss penalty.

The optimal block size is 8-64 bytes. Usually, I-

cache has a higher hit ratio than D-cache. Why?



Improving Cache Performance

• Reduce miss rate

• Reduce miss penalty

• Reduce hit time

Reducing miss rate

Three reasons for cache miss (3 C’s)

• Compulsory Cold Start

• Capacity Cache size < Program size

• Conflict Mapping restrictions

Method  1.   Use larger blocks.

But it is counterproductive beyond a limit.

Method  2. Increase the associativity.

But the cost goes up, and the hit time may

increase due to increased overhead of

associative search.



Method  3.  Victim Cache.

A fully associative cache that can hold 2-4

blocks, and works like a waste basket.

C

            P     V M

A 4-block victim cache reduced the conflict

misses of a 4 KB direct-mapped caches by 20-

95% without affecting the clock rate.

Method 4.   Instruction and Data Prefetching

Fetch one or more additional blocks during a

cache miss, and store the prefetched blocks in

the instruction stream buffer.



Method 5.    Compiler Optimizations

Example 1:  Loop Interchange

for (j=0;  j<100;  j=j+1) x[0][0]

for (i=0; i <100; i= i+1)      x[0][1]

x[i][j] = 2* x[i][j]

x[0][100]

loop interchange  x[1][0]

improves spatial x[1][1]

locality

for (i=0; i<100; i= i+1)  x[1][100]

for (j=0;  j <100;  j=j+1)

x[i][j] = 2* x[i][j]

Note.  In this example, we assumed that the elements

of the matrix have been stored in row-major

form.



Example  2.    Blocking reduces capacity misses

Maximize the use of existing cache blocks before

replacing them.

Consider X = Y * Z (each matrix is N x N)

X       Y      Z

Instead of multiplying the elements of a row of Y by the

elements in different columns of Z, divide them into

sub-operations, and make the best use of the data

elements already in the existing cache blocks


