
Boolean Algebra 

 

A + 0 = A    A + A’ = 1 

 A . 1 = A    A. A’ = 0 

 

1 + A = 1    A + B = B + A 

0. A = 0    A . B = B . A 

 

A + (B + C) = (A + B) + C 

A. (B. C) = (A. B). C 

 

A + A = A 

A . A  = A 

 

A. (B + C) = A.B + A.C  Distributive Law 

A + B.C = (A+B). (A+C) 

 

A . B = A + B  De Morgan’s theorem 

A + B = A . B



 

De Morgan’s theorem  

 

A . B = A + B   

A + B = A . B 

 

Thus,        is equivalent to 

 

Verify it using truth tables.  Similarly, 

 

      is equivalent to 

 

 

These can be generalized to more than two 

variables: to 

 

A. B. C = A + B + C   

A + B + C = A .  B . C



 

Synthesis of logic circuits 

 

Many problems of logic design can be specified using a 

truth table. Give such a table, can you design the logic 

circuit? 

 

Design a logic circuit with three inputs A, B, C and one 

output F such that F=1 only when a majority of the inputs is 

equal to 1. 

 

 

A B C F  Sum of product form 

 

0 0 0 0  F = A.B.C + A.B.C + A.B.C + A.B.C 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1  Draw a logic circuit to generate F 

 



 

Simplification of Boolean functions 
 

Using the theorems of Boolean Algebra, the algebraic 

forms of functions can often be simplified, which leads to 

simpler (and cheaper) implementations. 

 

Example 1 

 

F  = A.B + A.B + B.C 

 = A. (B + B) + B.C  How many gates do you save 

 = A.1 + B.C    from this simplification? 

 = A + B.C 

 

A       A 

          F

       B  

B          C     

      F      

C              



Example 2 

 

F =  A.B.C + A.B.C + A.B.C + A.B.C 

 

 =  A.B.C + A.B.C + A.B.C + A.B.C + A.B.C + A.B.C 

 

 =  (A.B.C + A.B.C) + (A.B.C + A.B.C) + (A.B.C + A.B.C) 

 

 = (A + A). B.C + (B + B). C.A + (C + C). A.B 

 = B.C + C.A + A.B 

 

Example 3 Show that A + A.B = A 

 

A + AB 

= A.1 + A.B 

= A. (1 + B) 

= A. 1 

= A 



Other types of gates 

 

A      A 

    A.B   B        A+B 

B 

 

NAND gate     NOR gate 

 

Be familiar with the truth tables of these gates. 

 

 

A 

B    A + B = A.B + A.B 

 

 

Exclusive OR (XOR) gate 

 



 

NAND and NOR are universal gates 

 

Any function can be implemented using only NAND 

or only NOR gates.  How can we prove this? 

 

(Proof for NAND gates) Any boolean function 

can be implemented using AND, OR and NOT gates. 

So if AND, OR and NOT gates can be implemented 

using NAND gates only, then we prove our point. 

 

 

1. Implement NOT using NAND 

 

     

  A       A  

 

 



 

2. Implementation of AND using NAND 

 

 

  A     A.B      

  B          A    

 

 

1.  Implementation of OR using NAND 

 

 A     A 

 

            A.B = A+B 

 B      

      B 

 

               

Exercise. Prove that NOR is a universal gate. 

 


