
Boolean Algebra

A + 0 = A A + A’ = 1

 A . 1 = A A. A’ = 0

1 + A = 1 A + B = B + A

0. A = 0 A . B = B . A

A + (B + C) = (A + B) + C

A. (B. C) = (A. B). C

A + A = A

A . A = A

A. (B + C) = A.B + A.C Distributive Law

A + B.C = (A+B). (A+C)

A . B = A + B De Morgan’s theorem

A + B = A . B

De Morgan’s theorem

A . B = A + B

A + B = A . B

Thus, is equivalent to

Verify it using truth tables. Similarly,

 is equivalent to

These can be generalized to more than two

variables: to

A. B. C = A + B + C

A + B + C = A . B . C

Synthesis of logic circuits

Many problems of logic design can be specified using a

truth table. Give such a table, can you design the logic

circuit?

Design a logic circuit with three inputs A, B, C and one

output F such that F=1 only when a majority of the inputs is

equal to 1.

A B C F Sum of product form

0 0 0 0 F = A.B.C + A.B.C + A.B.C + A.B.C

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1 Draw a logic circuit to generate F

Simplification of Boolean functions

Using the theorems of Boolean Algebra, the algebraic

forms of functions can often be simplified, which leads to

simpler (and cheaper) implementations.

Example 1

F = A.B + A.B + B.C

 = A. (B + B) + B.C How many gates do you save

 = A.1 + B.C from this simplification?

 = A + B.C

A A

 F

 B

B C

 F

C

Example 2

F = A.B.C + A.B.C + A.B.C + A.B.C

 = A.B.C + A.B.C + A.B.C + A.B.C + A.B.C + A.B.C

 = (A.B.C + A.B.C) + (A.B.C + A.B.C) + (A.B.C + A.B.C)

 = (A + A). B.C + (B + B). C.A + (C + C). A.B

 = B.C + C.A + A.B

Example 3 Show that A + A.B = A

A + AB

= A.1 + A.B

= A. (1 + B)

= A. 1

= A

Other types of gates

A A

 A.B B A+B

B

NAND gate NOR gate

Be familiar with the truth tables of these gates.

A

B A + B = A.B + A.B

Exclusive OR (XOR) gate

NAND and NOR are universal gates

Any function can be implemented using only NAND

or only NOR gates. How can we prove this?

(Proof for NAND gates) Any boolean function

can be implemented using AND, OR and NOT gates.

So if AND, OR and NOT gates can be implemented

using NAND gates only, then we prove our point.

1. Implement NOT using NAND

 A A

2. Implementation of AND using NAND

 A A.B

 B A

1. Implementation of OR using NAND

 A A

 A.B = A+B

 B

 B

Exercise. Prove that NOR is a universal gate.

