The Basics of Exception Handling

MIPS uses two coprocessors: CO and C1 for additional
help. CO primarily helps with exception handling, and C1
helps with floating point arithmetic. Each coprocessor

has a few registers.

Interrupts
Initiated outside the instruction stream
Arrive asynchronously (at no specific time),
Example:

o I/O device status change

o I/O device error condition
Traps
Occur due to something in instruction stream.
Examples:

> Unaligned address error

o Arithmetic overflow

o System call

MIPS coprocessor CO has a cause register (Register 13)
that contains a 4-bit code to identify the cause of an
exception

Cause register

pending exception code
interrupt
Bits 15-10 Bits 5-2

[Exception Code =0 means I/O interrupt

= 12 means arithmetic overflow etc]
MIPS instructions that cause overflow (or some other
violation) lead to an exception, which sets the exception
code. It then switches to the kernel mode (designated by
a bit in the status register of CO, register 12) and
transfers control to a predefined address to invoke a

routine (exception handler) for handling the exception.

Interrupt

. Enable
Status register

Interrupt Mask

15-8 1 O

(EPC = Exception Program Counter, Reg 14 of CO)

L: add $10, $t1, $12 overflow!
Return address (L+4) Exception
is saved in EPC handler routine

Next instruction
\ Overflow
ra < EPC; jrra

Invalid instruction
ra < EPC; jrra

System Call
ra < EPC; jrra

The Exception Handler determines the cause of the
exception by looking at the exception code bits. Then it
jumps to the appropriate exception handling routine.

Finally, it returns to the main program.

Exceptions cause mostly unscheduled procedure calls.

Example: Read one input from a Keyboard

Consider reading a value from the keyboard. Assume that
the interrupt enable bit is set to 1. The first line, ".text
0x80000080" places the code explicitly at the memory

location where the interrupt service routine is called.

text 0x80000080
mfcO SkO, $13 # SkO = SCause;
mfcO Sk1, S14 # Sk1 = SEPC;

andi SkO, SkO, 0x003c # SkO &= 0x003c (hex);

Filter the Exception Code;
bne SkO, Szero, NotlO # if (SkO == 0) go to NotlO

Exception Code 0 =>1/0 intr.
sw Sra, save0(S0) # saveO = Sra;
jal ReadByte # ReadByte(); (Get the byte).
lw Sra, save0(S0) # Sra = saveO;
jr Sk1 # return;

NotlO: Other routines here

Note that procedure ReadByte must save all registers

that it plans to use, and restore them later.

Understanding Logic Design

Appendix C of your Textbook on the CD

When you write add $10, $t1, $t2, you imagine something

like this:
$11
[> Adder SN
O $10
$12

What kind of hardware can ADD two binary integers?
We need to learn about GATES and BOOLEAN ALGEBRA

that are foundations of logic design.

X Y | XY

O 0o X }x.\/
0 1|0 y —

1 0|0

1 1 |1

OR gate

X Y | Xy

0 0o X

o 1 |1 X+Y
1 0 |1 y

1 1 |1

NOT gate

X X .
0 1 X X
1 0

Typically, logical 1 = +3.5 volt, and logical O = O volt. Other

representations are possible.

Analysis of logical circuits
X —%jjv
v Ty |)

What is the value of F when X=0 and Y=1?

Draw a truth table.

X Y F
o) o) o)
o) 1 1
1 o) 1
1 1 o)

This is the exclusive or (XOR) function. In algebraic

form F= XY + XY

More practice

1. Let A.B+ A.C=0.What are the values of A, B, C?
2. Let (A+B+ C).(A_+ B_+ C) = 0. What are the

possible values of A, B, C?

* Draw truth tables.

* Draw the logic circuits for the above two functions.

ki 2

