
Exception handling in Pipelined

Processors

Due to the overlapping of instruction execution,

multiple interrupts can occur in the same clock

cycle. Sources of interrupt in the MIPS are as

follows:

F Misaligned memory access,

Protection violation, Page fault

D Undefined opcode

X Arithmetic overflow

M Misaligned memory access

Protection violation, page fault

The need for precise interrupts is an additional

cause for complication.

Two simple cases

Example 1. I/0 device interrupt

When the interrupt occurs, the current instruction

completes, and the current context is saved. After

the interrupt is serviced, the context is restored,

and the execution resumes from the next

instruction.

Example 2. Page fault / arithmetic overflow

The current instruction cannot be completed. So it

is aborted, the exception is handled, and the

execution resumes from the instruction causing

the exception.

Precise vs. Imprecise Interrupts

To implement precise interrupts, the interrupt

handler needs to create the illusion of sequential

instruction execution.
 1 2 3 4 5 6 7 not executed

Completed also executed completed

The above scenario is feasible with some pipelined

processors. If the interrupt is precise, then you

must be able to draw a line between completed and

unexecuted instructions.

To implement a precise interrupt,

• Undo all instructions after the interrupting

instruction, and

• Restart from the faulting instruction.

Otherwise, the interrupt becomes imprecise.

Example of difficult cases

LW r4, X F D X M* W

ADD r1, r2, r3 F* D X M W

The Problem The second instruction

interrupts first! If the second instruction is

restarted first, and then the first instruction is

restarted, then second instruction is executed

twice!

A Solution Let the hardware post interrupts for

each instruction. When instruction enters the W

stage, check the interrupt flags, and handle the

flags in instruction order.

An important rule

Interrupt handling is simplified if we can disable or

defer all writes (that affect the state of the

computation) until the outcome of all the previous

instructions are satisfactorily resolved.

This avoids backtracking, shadow registers etc.

For such situations (and a few other situations

too), rename registers provide a convenient

solution.

Rename registers

Rename registers form a pool of registers that can

be temporarily used to store results until the

instruction is “committed”. These can be useful in

implementing precise interrupts.

Instruction 1 (completed)

Instruction 2 (completed)

Instruction 3 (generates an interrupt)

Instruction 4 (completed, with result in rename register)

Instruction 5 (not executed yet)

The result of instruction 4 will be written into a

rename register first. It is written into the final

destination (i.e committed or graduated) after all

previous instructions have completed their

executions.

MIPS with multicycle FP units

Latency of a functional unit

Number of clock cycles needed to produce a

result.

Repetition Rate (or Initiation Interval)

How often can the input operands be fed into

a functional unit?

F D

Integer

FP add/sub

FP mult

 FP divide

M W

Improving Repetition Rate

Method 1

Using N copies of a functional unit, repetition

rate can be improved by a factor of N.

Method 2

Use pipelined functional units.

How can we reduce latency?

F D

Int

FP add

FP add

FP add

 FP divide

 FP divide

M W

Pipelined Functional Units

X = 3.0 x 10 17, Y = 4.0 x 10 15

Compute S = X+Y

1. Alignment x = 300 x 1015, y = 4 x 1015

2. Add S = 304 x 1015

3. Normalize S = 3.04 x 1017

(X,Y)

 b u f f e r s

A three-stage add pipeline

If each stage takes 1 clock cycle, then the repetition

rate is reduced to 1 clock cycle.

Alignment Add Normalize

Additional Problems with Multicycle Units

Problem 1. New type of structural hazards

Two instructions contend for the same functional unit.

Was not possible in the first version of MIPS!

1 2 3 4 5 6 7

F0:=F4*F6 F D m m m m …

F4:=F8*F2 F D o o o

Two instructions try to write into the register file at the

same time.

1 2 3 4 5 6 7

F2 := F4+F6 F D a a a M W

F10:= F4/F6 F D d d d …

F8 := M[R2] F D X M W

Note. The functional units are not pipelined here.

How will the first example change if the multiplier is

pipelined?

Problem 2. Write-After-Write (WAW) Hazard

Instruction 1 F2:= F2/F4

Instruction 2 F2:=F8+F6

1: F D d d d d d d M W

2: F D a a a M W

The final value of F2 is incorrect!

Possible solutions

1. Disable “W” of instruction 1.

2. Defer the completion of instruction 2.

As a general strategy, if instructions are

retired in program order, then such problems

are solved. Rename register helps.

Problem 3.

Are interrupts precise?

Long instr1

Short instr2

If 1 is restarted, then 2 is executed twice. To

undo instruction 2, you must save the old value

of F10.

A solution is to retire instructions in program

order. Save the result of 2 until 1 is

completed.

Superscalar vs Superpipelined CPU

MIPS R 4000 is a 64-bit RISC.

® It is a superpipelined processor with eight

stages in its instruction pipeline.

® It keeps control unit simple, and maximizes

clock speed. The compiler resolves hazards.

 pipelined

 superpipelined (one long pipeline)

 superscalar (multiple pipelines)

MIPS 4000 pipeline

Instruction fetch (first half)

Instruction fetch (second half)

Register fetch (decode)

Execute (integer & FP units)

Data fetch (first half)

Data fetch (second half)

Tag check

Write back

LOAD R3,X IF IS RF EX DF DS TC WB

ADD R1,R2,R3 IF IS RF o o EX DF

SUB R5,R4,R3 IF IS o o RF EX

Two-cycle load delay

IF

IS

RF

EX
EX
DF

DS

TC

WB

MIPS 4000 Multifunction Pipes

Unifunctional pipes. A separate pipe for each function

like ADD MULT. Used in CRAY.

Multifuction pipes. Each function is implemented by

reconfiguring some basic functional blocks at run time.

Function A

Function B

First used in Texas Instruments ASC

MIPS R4000 uses multifunction pipes.

Eight stages of FP pipeline

Stage Unit Description

A FP add Mantissa add

D FP div Divide

E FP mul Exception test

M FP mul Multiplier first stage

N FP mul Multiplier second stage

R FP add Rounding

S FP add Operand shift

U all Unpack FP numbers

 1 2 3 4

ADD = U, S+A, A+R, R+S

Latency = 4 cycles

Initiation interval = 3 cycles

U S R

A A

R

S

Structural hazards with FP stages

The following table examines when an ADD

operation can be scheduled after a MUL

operation without causing a structural hazard.

clock 1 2 3 4 5 6 7 8

MUL U M M M M N N+A R

ADD U S+A A+R R+S

ADD U S+A A+R R+S

ADD U S+A A+R R+S

ADD (stall) U S+A A*+R

ADD (stall) U S+A*

Control unit resolves hazard by appropriately

delaying certain stages. Verify that there is no

hazard if a MUL follows an ADD.

