
More pipeline facts

Where to spend your $

The steady state throughput is determined by the

slowest stage of the pipeline. There is no point in

speeding up the ALU if the memory units are slow.

Performance Enhancement

Execution time on non-pipelined CPU
Speedup =

 Execution time on pipelined CPU

Control Hazard

lw r1, 32(r2) F D X M W

L1: beq r1, r3, L2 F D X M W

addi r1, r1, 1 F D X M W

addi r4, r4, -1 F D X M

L2:

If the condition of beq is true, then two wrong

instructions will enter the pipe, and need to be

flushed out.

Equality
detected here

Solution 1: Insert bubble

lw r1, 32(r2) F D X M W

L1: beq r1, r3, L2 F D X M W

addi r1, r1, 1 o o o o o

addi r4, r4, -1 o o o o

L2: F D X

 Branch penalty = 2 cycles

But how will the control unit know that the

conditional branch will be taken? Use prediction.

Since most forward branches are not taken, a

common prediction by the control unit is that the

branch will not be taken.

Solution 2: Predict not taken
Case 1. Branch not taken

lw r1, 32(r2) F D X M W

L1: beq r1, r3, L2 F D X M W

addi r1, r1, 1 F D X M W

addi r4, r4, -1 F D X M

L2: F D X

Case 2. Branch taken

lw r1, 32(r2) F D X M W

L1: beq r1, r3, L2 F D X M W

addi r1, r1, 1 F D o o o

addi r4, r4, -1 F o o o

L2: F D X

2 wrong
instructions
s

Flushing the pipe

The wrong instructions need to be flushed out

from the pipeline. One mechanism is to disable the

writes (by generating proper control signals), so

that the wrong instructions are reduced to NOP.

 F D X M W

 F D X M W turn off writes

beq
condition is
true

Branch

target

Speedup

Estimate the slowdown now (assume that 15%

instructions are conditional branch).

5
Speedup =

1 + branch frequency x branch penalty

Reducing Branch Penalty

Early detection of branch condition and

computation of the branch target address help

reduce branch penalty. One can modify the

datapath to detect the branch condition in the D-

stage and reduce the branch penalty to one cycle.

Ideal
speedup

Compiler Scheduling of Branch Delay Slots

(Assume that branch penalty = 1 cycle)

Original program Transformed version

Instruction 1 Instruction 1

Branch instruction Branch Instruction

Instruction 3 Branch delay slot [NOP]

Instruction 4 Instruction 3

Instruction 4

Scheduling a NOP after a conditional branch is

equivalent to “fetching and flushing an instruction”

by the control unit.

Al alternative is to schedule some meaningful

instruction in the branch delay slot.

Instruction reordering by the compiler

Example 1

r7 := r2 + r3

if (r2=0) then go to L if (r2=0) then go to L

branch delay slot r7 := r2 + r3

instruction instruction

… … … …

L: do something L: do something

NOTE: Always improves performance if such an

unrelated instruction is available.

Example 2 (Backward branch)

L: r4:= r5 – r6

 r1:= r1 - r2 L1: r1:=r1 - r2

 if r1=0 then goto L if r1=0 then goto L

 branch delay slot r4:= r5 – r6

 instruction instruction

Performance improves when the branch is taken.

However, it must be OK to execute r4:= r5-r6

when the branch is not taken (or else the

instruction has to be canceled)

Example 3 (Forward branch)

 r1:= r2 – r3 r1:= r2 – r3

 if r1=0 then goto L if r1=0 then goto L

 branch delay slot r4:= r5 – r6

 r4:= r5 – r6

 L: instruction L: instruction

Performance improves when the branch is NOT

taken. However, it must be OK to execute r4:= r5-

r6 when the branch is taken (or else the

instruction has to be canceled)

Brach prediction

Static prediction vs. dynamic prediction

Static prediction is done during compile time. It is

a rule of thumb that forward branches are usually

not taken, and backward branches are usually

taken.

Dynamic branches are predicted by profiling the

run-time behavior of programs.

Ideally we want to have a “crystal ball”, so that we

can see ahead of time whether a branch will be

taken or not.

