
Run time environment of a MIPS program

Low address

Growth of stack

High address

Frame pointer

Saved argument
registers beyond
a0-a3

Return address

Temporary local
variables

Stack pointer

A translation hierarchy

HLL program

COMPILER

Assembly language program

ASSEMBLER

Machine language module

LINKER Library routine

Executable machine language program

LOADER

Memory

What are Assembler directives?

Instructions that are not executed, but they tell the

assembler about how to interpret something. Here are

some examples:

. text

{Program instructions here}

. data

{Data begins here}

. byte 84, 104, 101

. asciiz “The quick brown fox”

. float f1,. . . , fn

. word w1, wn

How does an assembler work?

In a two-pass assembler

PASS 1: Symbol table generation

PASS 2: Code generation

To be explained in the class …

Other architectures

Not all processors are like MIPS.

Example. Accumulator-based machines

A single register, called the accumulator, stores the

operand before the operation, and stores the result

after the operation.

Load x # into acc from memory

Add y # add y from memory to the acc

Store z # store acc to memory as z

Can we have an instruction

add z, x, y # z:= x + y, (x, y, z in memory) ?

For some machines, YES, not in MIPS

Load-store machines

MIPS is a load-store architecture. Only load and store

instructions access the memory, all other instructions use

registers as operands. What is the motivation?

Register access is much faster than memory access, so

the program will run faster.

Reduced Instruction Set Computers (RISC)

• The instruction set has only a small number of

frequently used instructions. This lowers processor

cost, without much impact on performance.

• All instructions have the same length.

• Load-store architecture.

Non-RISC machines are called CISC

 (Complex Instruction Set Computer). Example: Pentium

Another classification

3-address add r1, r2, r3 (r1 ¨ r2 + r3)

2-address add r1, r2 (r1 ¨ r1 + r2)

1-address add r1 (to the accumulator)

0-address or stack machines (see below)

Example of stack architecture

Push x

Push y

Push z

Add

Multiply

Pop z

Computes z = x * (y + z)

x x

y

z

x

y+z

x * (y+z)

Computer Arithmetic

How to represent negative integers? The most widely

used convention is 2’s complement representation.

+14 = 0, 1 1 1 0

-14 = 1, 0 0 1 0

Largest integer represented using n-bits is + 2n-1 - 1

Smallest integer represented using n-bits is - 2n-1

Review binary-to decimal and binary-to-hex conversions.

Review BCD (Binary Coded Decimal) and ASCII codes.

How to represent fractions?

Overflow

+12 = 0, 1 1 0 0 +12 = 0, 1 1 0 0

+2 = 0, 0 0 1 0 +7 = 0, 0 1 1 1

add add

+14 = 0, 1 1 1 0 ? = 1, 0 0 1 1

Addition of a positive and a negative number does not

lead to overflow. How to detect overflow?

Exceptions

MIPS coprocessor has a cause register that contains a 4-

bit code to identify the cause of an exception

Cause register

15-10 5-2

MIPS instructions that cause overflow (or some other

violation) lead to an exception (also called an interrupt),

and transfer control to a predefined address to invoke a

routine (exception handler) for handling the exception.

L: add $t0, $t1, $t2 overflow!

Return address (L+4)

is saved in EPC

Next instruction

Exceptions cause unscheduled procedure calls.

pending exception code
interrupt

Exception
handler
routine
ra ¨ EPC
jr ra

The following sequence of MIPS instructions can detect

overflow in signed addition of $t1 and $t2:

addu $t0, $t1, $t2 # add unsigned

xor $t3, $t1, $t2 # check if signs differ

slt $t3, $t3, $zero # $t3=1 if signs differ

bne $t3 $zero, no_overflow

xor $t3, $t0, $t1 # sum sign = operand sign?

slt $t3, $t3, $zero # if not, then $t3=1

bne $t3, $zero, overflow

no_overflow:

. . .

. . .

overflow:

<Do something to handle overflow>

More Programming Examples

Copying a string

a0

Each char is represented array x

by an ASCII byte. The s0

string is terminated by

a Null in ASCII). Reg s0 a1

will hold the array index.

array y

add $s0, $zero, $zero # i = 0

L1: add $t1, $a1, $s0 # address of y[i] in t1

lb $t2, 0($t1) # t2 = y[i]

add $t3, $a0, $s0 # address of x[i] in t3

sb $t2, 0($t3) # x[i] = y[i]

addi $s0, $s0, 1 # i = i+1

bne $t2,$zero, L1 # if y[i]≠0 then goto L1

.

I
O
W
A

null

Load
byte

