
Pseudo-instructions
These are easy-to-use assembly language instructions

that do not have a direct machine language equivalent.

During assembly, the assembler translates each psedudo-

instruction into one or more machine language

instructions. Pseudo-instructions enrich the instruction

set, and make programming easier.

Example

move $t0, $t1 # $t0 ! $t1 (pseudo-instruction)

The assembler will translate it to add $t0, $zer0, $t1

Consider the new instruction slt $s1, $s2, $s3 (set less

than) if $s2 < $s3 then set $s1 to 1

Now, there is a pseudo-instruction blt $s0, $s1, label

The assembler translates this to

slt $t0, $s0, $s1 # if $s0 < $s1 then $t0 =1 else $t0 = 0

bne $t0, $zero, label # if $t0 " 0 then goto label

Loading a 32-bit constant into a register

Quite often, we would like to load a constant

value into a register (or a memory location)

lui $s0, 42 # load upper-half immediate

ori $s0, $s0, 18 # (one can also use andi)

What is the end result?

Compiling a switch statement
switch (k) {

 case 0: f = i + j; break;

 case 1: f = g + h; break;

 case 2: f = g – h; break;

 case 3: f = i – j; break;

}

Assume, $s0-$s5 contain f, g, h, i, j, k. Let $t2 contain 4.

 slt $t3, $s5, $zero # if k < 0 then $t3 = 1 else $t3=0

 bne $t3, $zero, Exit # if k<0 then Exit

 slt $t3, $s5, $t2 # if k<4 then $t3 = 1 else $t3=0

 beq $t3, $zero, Exit # if k# 4 the Exit

 What next? Jump to the right case!

 jumptable

 register $t4

L0

L1

Exit

 MEMORY

32-bit address L0

32-bit address L1

32-bit address L2

32-bit address L3

Base address
of the
jumptable

f = i + j

J Exit

f = g+h

j Exit

Here is the remainder of the program;

 add $t1, $s5, $s5 # t1 = 2*k

 add $t1, $t1, $t1 # t1 = 4*k

 add $t1, $t1, $t4 # t1 = base address + 4*k

 lw $t0, 0($t1) # load the address pointed

 # by t1 into register t0

 jr $t0 # jump to addr pointed by t0

L0: add $s0, $s3, $s4 # f = i + j

 J Exit

L1: add $s0, $s1, $s2 # f = g+h

 J Exit

L2: sub $s0, $s1, $s2 # f = g-h

 J Exit

L3: sub $s0, $s3, $s4 # f = i - j

Exit: <next instruction>

The instruction formats for jump and branch

J 10000 is represented as

 6-bits 26 bits

This is the J-type format of MIPS instructions.

Conditional branch is represented using I-type format:

bne $s0, $s1, Label is represented as

 6 5 5 16-bit offset

Current PC + (4 * offset) determines the branch target Label

This is called PC-relative addressing.

2 2500

5 16 17

Revisiting machine language of MIPS

starts from 80000

 Loop: add $t1, $s3, $s3

 add $t1, $t1, $t1

 add $t1, $t1, $s6

 lw $t0, 0($t1)

 bne $t0, $s5, Exit

 add $s3, $s3, $s4

 j Loop

 Exit:

 6 5 5 5 5 6

80000 0 19 19 9 0 32 R-type

80004 0 9 9 9 0 32 R-type

80008 0 9 22 9 0 32 R-type

80012 35 9 8 0 I-type

80016 5 8 21 2 (why?) I-type

80020 0 19 20 19 0 32 R-type

80024 2 20000 (why?) J-type

80028

What does
this program
do?

Machine
language
version

Addressing Modes

What are the different ways to access an operand?

• Register addressing

Operand is in register

add $s1, $s2, $s3 means $s1 ! $s2 + $s3

• Base addressing

Operand is in memory.

The address is the sum of a register and a constant.

lw $s1, 32($s3) means $s1 ! M[s3 + 32]

As special cases, you can implement

Direct addressing $s1 ! M[32]

Indirect addressing $s1 ! M[s3]

Which helps implement pointers

• Immediate addressing

 The operand is a constant.

 How can you execute $s1 ! 7?

 addi $s1, $zero, 7 means $s1 ! 0 + 7

 (add immediate, uses the I-type format)

• PC-relative addressing

 The operand address = PC + an offset

Implements position-independent codes. A small

offset is adequate for short loops.

• Pseudo-direct addressing

Used in the J format. The target address is the

concatenation of the 4 MSB’s of the PC with the 28-bit

offset. This is a minor variation of the PC-relative

addressing format.

