CS 2210 Discrete Structures
Algorithms and Complexity
Fall 2017
Sukumar Ghosh
What is an algorithm

A finite set (or sequence) of precise instructions for performing a computation.

Example: Maxima finding

procedure max (a₁, a₂, ..., aₙ: integers)
max := a₁
for i := 2 to n
 if max < aᵢ then max := aᵢ
return max {the largest element}
Flowchart for maxima finding

start

max := a_1

i := 2

max < a_i

max = a_i

i = n?

i := i + 1

Given n elements, can you count the total number of operations?

end
Time complexity of algorithms

Counts the largest number of basic operations required to execute an algorithm.

Example: Maxima finding

procedure max (a1, a2, ..., an: integers)
max := a1 1 operation
for i := 2 to n 1 operation i:=2
 if max < a1 then max := ai {n-1 times}
 {2 ops + 1 op to check if i > n + 1 op to increment i}
return max {the largest element}

The total number of operations is 4(n-1)+2 = 4n-2
Example of linear search (Search x in a list $a_1 \ a_2 \ a_3 \ldots \ a_n$)

$$k := 1$$ \hspace{1cm} \{1 \text{ op}\}

while $k \leq n$ do \hspace{1cm} \{n ops $k \leq n$\}

 $$\{\text{if } x = a_k \text{ then } \text{found} \text{ else } k := k+1\}$$ \hspace{1cm} \{2n \text{ ops } + 1 \text{ op}\}

search failed

The maximum number of operations is $3n+2$. If we are lucky, then search can end even in the first iteration.
Time complexity of algorithms

Binary search (Search x in a sorted list $a_1 < a_2 < a_3 < ... < a_n$)

```plaintext
procedure binary search (x: integer, a_1, a_2, ..., a_n: increasing integers)
i := 1 {i is left endpoint of search interval}
j := n {j is right endpoint of search interval}
while i < j
    m := \left\lfloor (i + j)/2 \right\rfloor
    if x > a_m then i := m + 1
    else j := m
if x = a_i then location := i
else location := 0 {search failed}
```

How many operations? Roughly log n. Why?
Bubble Sort

procedure bubblesort (A : list of items)
n = length (A)
repeat
 for i = 1 to n-1 do
 if A[i-1] > A[i] then swap (A[i-1], A[i])
 end if
end for
n: = n - 1
until n=0
end procedure
Bubble Sort

FIGURE 1 The Steps of a Bubble Sort.
Bubble Sort

The worst case time complexity is

\[(n-1) + (n-2) + (n-3) + \ldots + 2 \]

\[= n(n-1)/2 - 1 \]

<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>4</th>
<th>1</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
The Big-O notation

It is a measure of the growth of functions and often used to measure the complexity of algorithms.

DEF. Let f and g be functions from the set of integers (or real numbers) to the set of real numbers. Then f is $O(g(x))$ if there are constants C and k, such that

$$|f(x)| \leq C|g(x)| \quad \text{for all } x > k$$

Intuitively, $f(x)$ grows “slower than” some multiple of $g(x)$ as x grows without bound. Thus $O(g(x))$ defines an upper bound of $f(x)$.
The Big-O notation

\[y = x^2 + 2x + 1 \]

\[x^2 + 2x + 1 = O(x^2) \]

Since \(4x^2 > x^2 + 4x + 1 \)

whenever \(x > 1 \), \(4x^2 \) defines an upper bound of the growth of \(x^2 + 2x + 1 \)

Defines an upper bound of the growth of functions
The Big-Ω (omega) notation

DEF. Let f and g be functions from the set of integers (or real numbers) to the set of real numbers. Then f is $\Omega(g(x))$ if there are constants C and k, such that

$$|f(x)| \geq C|g(x)|$$

for all $x > k$

Example. $7x^2 + 9x + 4$ is $\Omega(x^2)$, since $7x^2 + 9x + 4 \geq 1 \cdot x^2$ for all x

Thus Ω defines the **lower bound** of the growth of a function

Question. Is $7x^2 + 9x + 4$ $\Omega(x)$?
The Big-Theta (Θ) notation

DEF. Let f and g be functions from the set of integers (or real numbers) to the set of real numbers. Then f is $\Theta(g(x))$ if there are constants C_1 and C_2 a positive real number k, such that

\[
C_1 |g(x)| \leq |f(x)| \leq C_2 |g(x)| \quad \text{for all } x > k
\]

Example. $7x^2 + 9x + 4$ is $\Theta(x^2)$,

since $1 \cdot x^2 \leq 7x^2 + 9x + 4 \leq 8 \cdot x^2$ for all $x > 10$
Average case performance

EXAMPLE. Compute the average case complexity of the *linear search* algorithm.

\[a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ \ldots \ \ a_n \ (Search \ for \ x \ from \ this \ list) \]

If \(x \) is the 1\(^{st} \) element then it takes 5 steps
If \(x \) is the 2\(^{nd} \) element then it takes 8 steps
If \(x \) is the \(i^{th} \) element then it takes \((3i + 2) \) steps
So, the average number of steps = \(\frac{1}{n} \ [5+8+\ldots+(3n+2)] = ? \)
Classification of complexity

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Terminology</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(1)$</td>
<td>Constant complexity</td>
</tr>
<tr>
<td>$\Theta(\log n)$</td>
<td>Logarithmic complexity</td>
</tr>
<tr>
<td>$\Theta(\log n)^c$</td>
<td>Poly-logarithmic complexity</td>
</tr>
<tr>
<td>$\Theta(n)$</td>
<td>Linear complexity</td>
</tr>
<tr>
<td>$\Theta(n^c)$</td>
<td>Polynomial complexity</td>
</tr>
<tr>
<td>$\Theta(b^n) \ (b>1)$</td>
<td>Exponential complexity</td>
</tr>
<tr>
<td>$\Theta(n!)$</td>
<td>Factorial complexity</td>
</tr>
</tbody>
</table>

We also use such terms when Θ is replaced by O (big-O)
Exercise

Complexity of n^5 $O(2^n)$ True or false?
Complexity of 2^n $O(n^5)$ True or false?
Complexity of $\log (n!)$ $\Theta(n \log n)$ True or false?
Complexity of $1^2+2^2+3^2+...+n^2$ $\Omega(n^3)$ True or false?”

Let $S = \{0, 1, 2, ..., n\}$. Think of an algorithm that generates all the subsets of three elements from S, and compute its complexity in big-O notation.
Greedy Algorithms

In optimization problems, many algorithms that use the best choice at each step are called greedy algorithms.

Example. Devise an algorithm for making change for n cents using quarters, dimes, nickels, and pennies using the least number of total coins?
Greedy Change-making Algorithm

Let \(c_1, c_2, \ldots, c_r \) be the denomination of the coins, (and \(c_i \))

\[
\text{for } i := 1 \text{ to } r \\
\text{while } n \geq c_i \\
\begin{align*}
\text{begin} \\
\text{add a coin of value } c_i \text{ to the change} \\
n := n - c_i \\
\text{end}
\end{align*}
\]

Question. Is this optimal? Does it use the least number of coins?

Let the coins be 1, 5, 10, 25 cents. For making 38 cents, you will use
1 quarter
1 dime
3 cents
The total count is 5, and it is optimum.
Greedy Change-making Algorithm

But if you don’t use a nickel, and you make a change for 30 cents using the same algorithm, you will use 1 quarter and 5 cents (total 6 coins). But the optimum is 3 coins (use 3 dimes!)

So, greedy algorithms produce results, but the results may be sub-optimal.
Greedy Routing Algorithm

If you need to reach point B from point A in the fewest number of hops, then which route will you take? If the knowledge is local, then you are tempted to use a greedy algorithm, and reach B in 5 hops, although it is possible to reach B in only two hops.
Other classification of problems

• Problems that have polynomial worst-case complexity are called **tractable**. Otherwise they are called **intractable**.

• Problems for which no solution exists are known as **unsolvable** problems (like the **halting problem**). Otherwise they are called **solvable**.

• Many solvable problems are believed to have the property that no **polynomial time solution** exists for them, but a solution, if known, **can be checked in polynomial time**. These belong to the **class NP** (as opposed to the class of tractable problems that belong to **class P**)
Estimation of complexity

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>50</th>
<th>100</th>
<th>300</th>
<th>1000</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$5n$</td>
<td>50</td>
<td>250</td>
<td>500</td>
<td>1500</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>$n \times \log n$</td>
<td>33</td>
<td>282</td>
<td>665</td>
<td>2469</td>
<td>9966</td>
<td></td>
</tr>
<tr>
<td>n^2</td>
<td>100</td>
<td>2500</td>
<td>10000</td>
<td>90000</td>
<td>1 million (7 digits)</td>
<td></td>
</tr>
<tr>
<td>n^3</td>
<td>1000</td>
<td>125000</td>
<td>1 million (7 digits)</td>
<td>27 million (8 digits)</td>
<td>1 billion (10 digits)</td>
<td></td>
</tr>
<tr>
<td>2^n</td>
<td>1024</td>
<td>a 16-digit number</td>
<td>a 31-digit number</td>
<td>a 91-digit number</td>
<td>a 302-digit number</td>
<td></td>
</tr>
<tr>
<td>$n!$</td>
<td>3.6 million (7 digits)</td>
<td>a 65-digit number</td>
<td>a 161-digit number</td>
<td>a 623-digit number</td>
<td>unimaginably large</td>
<td></td>
</tr>
<tr>
<td>n^n</td>
<td>10 billion (11 digits)</td>
<td>an 85-digit number</td>
<td>a 201-digit number</td>
<td>a 744-digit number</td>
<td>unimaginably large</td>
<td></td>
</tr>
</tbody>
</table>

(The number of protons in the known universe has 79 digits.)
(The number of microseconds since the Big Bang has 24 digits.)

The Halting Problem

The **Halting problem** asks the question.

Given a program and an input to the program, determine if the program will eventually stop when it is given that input.

• Run the program with that input. *If the program stops*, then we know it stops.

• But **if the program doesn't stop** in a reasonable amount of time, then we **cannot conclude that it won't stop**. Maybe we didn't wait long enough!

The question is not decidable in general!
The Traveling Salesman Problem

An Instance of the Traveling Salesman Problem

Starting from a node, you have to visit every other node and return to your starting point. Find the shortest route? NP-complete
3-Satisfiability Problem

Consider an expression like this:

\[(x)\]

Does there exist an assignment of values of x, y, z so that this formula is true? NP-Complete problem!