CS 2210 Discrete Structures Advanced Counting

Fall 2017

Sukumar Ghosh

Compound Interest

A person deposits \$10,000 in a savings account that yields 10% interest annually. How much will be there in the account after 30 years?

Let P_n = account balance after n years.

Then $P_n = P_{n-1} + 0.10 P_{n-1} = 1.1P_{n-1}$

Note that the definition is recursive.

What is the solution P_n ?

 $P_n = P_{n-1} + 0.10 P_{n-1} = 1.1P_{n-1}$ is a **recurrence relation**

By "solving" this, we get the non-recursive version of it.

Recurrence Relation

Recursively defined sequences are also known as recurrence relations. The actual sequence is a solution of the recurrence relations.

Consider the recurrence relation: $a_{n+1} = 2a_n (n > 0)$ [Given $a_1 = 1$]

The solution is: $a_n = 2^{n-1}$ (The sequence is 1, 2, 4, 8, ...)

So, a₃₀ = 2²⁹

Given any recurrence relation, can we "solve" it?

Which are the ones that can be solved easily?

More examples of Recurrence Relations

1. Fibonacci sequence: $a_n = a_{n-1} + a_{n-2}$ (n > 2) [Given $a_1 = 1$, $a_2 = 1$]

What is the formula for a_n ?

2. How many bit strings of length n that *do not have two consecutive 0s.*

For n=1, the strings are **0** and **1** For n=2, the strings are **01**, 10, 11 For n=3, the strings are **011**, 111, 101, **0**10, **1**10

Do you see a pattern here?

Example of Recurrence Relations

Let a_n be the number of bit strings of length n that do not have two consecutive 0's.

This can be represented as $a_n = a_{n-1} + a_{n-2}$ (why?)

[bit string of length (n-1) without a 00 anywhere] 1 (a_{n-1}) and [bit string of length (n-2) without a 00 anywhere] 10 (a_{n-2})

 $a_n = a_{n-1} + a_{n-2}$ is a recurrence relation. Given this, can you find a_n ?

Tower of Hanoi

Transfer these disks from one peg to another. However, at no time, a larger disk should be placed on a disk of smaller size. Start with 64 disks. When you have finished transferring them one peg to another, the world will end.

Let, H_n = number of moves to transfer n disks. Then

 $H_n = 2H_{n-1} + 1 \text{ (why?)}$

Can you solve this and compute H_{64} ? ($H_1 = 1$)

Solving Linear Homogeneous Recurrence Relations

A *linear* recurrence relation is of the form

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} + c_3 a_{n-3} + ... + c_k a_{n-k}$

(here c₁, c₂, ..., c_n are constants)

Its solution is of the form $a_n = r^n$ (where r is a constant) if and only if

r is a solution of

$$r^{n} = c_{1} \cdot r^{n-1} + c_{2} \cdot r^{n-2} + c_{3} \cdot r^{n-3} + \dots + c_{k} \cdot r^{n-k}$$

This equation is known as the characteristic equation.

Example 1

Solve: $a_n = a_{n-1} + 2 a_{n-2}$ (Given that $a_0 = 2$ and $a_1 = 7$)

Its solution is of the "form" $a_n = r^n$

The characteristic equation is: $r^2 = r + 2$, i.e. $r^2 - r - 2 = 0$. It has two roots r = 2, and r = -1

The sequence $\{a_n\}$ is a solution to this recurrence relation iff $a_n = \alpha_1 2^n + \alpha_2 (-1)^n$

 $a_0 = 2 = \alpha_1 + \alpha_2$ $a_1 = 7 = \alpha_1$. 2 + α_2 .(-1) This leads to $\alpha_1 = 3$, and $\alpha_2 = -1$

So, the solution is $a_n = 3.2^n - (-1)^n$

Example 2: Fibonacci sequence

Solve: $f_n = f_{n-1} + f_{n-2}$ (Given that $f_0 = 0$ and $f_1 = 1$)

Its solution is of the form $f_n = r^n$

The characteristic equation is: $r^2 - r - 1 = 0$. It has two roots $r = \frac{1}{2}(1 + \sqrt{5})$ and $\frac{1}{2}(1 - \sqrt{5})$

The sequence $\{a_n\}$ is a solution to this recurrence relation iff $f_n = \alpha_1 (\frac{1}{2}(1 + \sqrt{5}))^n + \alpha_2 (\frac{1}{2}(1 - \sqrt{5}))^n$

(Now, compute $\alpha 1$ and $\alpha 2$ from the initial conditions): $\alpha 1 = 1/\sqrt{5}$ and $\alpha 2 = -1/\sqrt{5}$

The final solution is
$$f_n = 1/\sqrt{5}$$
. $(\frac{1}{2}(1 + \sqrt{5}))^n - 1/\sqrt{5}$. $(\frac{1}{2}(1 - \sqrt{5}))^n$

Example 3: Case of equal roots

If the characteristic equation has only one root $r_0(*)$, then the solution will be

 $a_n = \alpha_1 r_0^n + \alpha_2 .nr_0^n$

See the example in the book.

Example 4: Characteristic equation with complex roots

Solve: $a_n = 2.a_{n-1} - 2.a_{n-2}$ (Given that $a_0 = 0$ and $a_1 = 2$)

The characteristic equation is: $r^2 - 2r + 2 = 0$. It has two roots

(1 + i) and (1 - i)

The sequence $\{a_n\}$ is a solution to this recurrence relation iff $a_n = \alpha_1 (1+i)^n + \alpha_2 (1-i)^n$

(Now, compute $\alpha 1$ and $\alpha 2$ from the initial conditions): $\alpha 1 = -i$ and $\alpha 2 = i$

The final solution is $a_n = -i.(1+i)^n + i.(1-i)^n$

Check if it works!

- Some recursive algorithms divide a problem of size "n" into "b" sub-problems each of size "n/b", and derive the solution by combining the results from these sub-problems.
- This is known as the divide-and-conquer approach

Example 1. Binary Search:

If f(n) comparisons are needed to search an object from a list of size n, then

$$f(n) = f(n/2) + 2$$

[1 comparison to decide which half of the list to use, and 1 more to check if there are remaining items]

Example 2: Finding the maximum and minimum of a sequence

f(n) = 2.f(n/2) + 2

Example 3. Merge Sort:

Divide the list into two sublists, sort each of them and then merge. Here

$$f(n) = 2.f(n/2) + n$$

Theorem. The solution to a recurrence relations of the form f(n) = a.f(n/b) + c

(here b divides n, $a \ge 1$, b > 1, and c is a positive real number) is

$$f(n) = O(\log n) \quad (if a=1)$$
$$= O(n^{\log_b a}) \quad (if a > 1)$$

(See the complete derivation in page 530)

PROOF OUTLINE. Given f(n) = a.f(n/b) + c

Let $n=b^k$. Then $f(n) = a.[a.f(n/b^2)+c] + c$

= $a.[a.[a.f(n/b^3)+c]+c]+c$ and so on ...

$$= a^{k} \cdot f(n/b^{k}) + c \cdot (a^{k-1}+a^{k-2}+...+1) \quad ... (1)$$

$$= a^{k}.f(n/b^{k}) + c.(a^{k}-1)/(a-1)$$

$$= a^{k}.f(1) + c.(a^{k}-1)/(a-1)$$
 ... (2)

PROOF OUTLINE. Given f(n) = a.f(n/b) + c

When a=1,
$$f(n) = f(1) + c.k$$
 (from 1)
Note that $n=b^k$, $k = log_b n$,
So $f(n) = f(1) + c. log_b n$
[Thus $f(n) = O(log n)$]

When a>1, $f(n) = a^{k} [f(1) + c/(a-1)] + c/(a-1) [a^{k} = n^{\log_{b} a}]$ = $O(n^{\log_{b} a})$

What if $n \neq b^k$? The result still holds.

```
Assume that b^k < n < b^{k+1}.

So, f(n) < f(b^{k+1})

f(b^{k+1}) = f(1) + c.(k+1)

= [f(1) + c] + c.k

= [f(1) + c] + c.log_b n

Therefore, f(n) is O(log n)
```

Apply to binary search

$$f(n) = f(n/2) + 2$$

The complexity of binary search $f(n) = O(\log n)$

(since a=1)

What about finding the maximum or minimum of a sequence? f(n) = 2f(n/2) + 2

So, the complexity is $f(n) = O(n^{\log_b a}) = O(n^{\log_2 2}) = O(n)$

Master Theorem

MASTER THEOREM Let *f* be an increasing function that satisfies the recurrence relation

 $f(n) = af(n/b) + cn^d$

whenever $n = b^k$, where k is a positive integer, $a \ge 1$, b is an integer greater than 1, and c and d are real numbers with c positive and d nonnegative. Then

$$f(n) \text{ is } \begin{cases} O(n^d) & \text{ if } a < b^d, \\ O(n^d \log n) \text{ if } a = b^d, \\ O(n^{\log_b a}) & \text{ if } a > b^d. \end{cases}$$

Note that there are four parameter: a, b, c, d