
CS	2210	Discrete	Structures
Advanced	Counting

Fall	2017
Sukumar	Ghosh



Compound	Interest

A	person	deposits	$10,000	in	a	savings	account	that	yields	
10%	interest	annually.	How		much	will	be	there	in	the	account	
after	30	years?

Let	Pn =	account	balance	after	n years.

Then	Pn =	Pn-1 +	0.10	Pn-1	=	1.1Pn-1
Note	that	the	definition	is	recursive.		

What	is	the	solution	Pn?

Pn =	Pn-1 +	0.10	Pn-1	=	1.1Pn-1 is	a	recurrence	relation

By	“solving”	this,	we	get	the	non-recursive	version	of	it.



Recurrence	Relation

Recursively	defined	sequences	are	also	known	as		recurrence	
relations.	The	actual	sequence	is	a	solution of	the	recurrence	
relations.	

Consider	the	recurrence	relation:	an+1	=	2an(n >	0)		[Given	a1=1]

The	solution is:	an =	2n-1	(The	sequence	is	1,	2,	4,	8,	…)	
So,	a30 =	229

Given	any	recurrence	relation,	can	we	“solve”	it?	

Which	are	the	ones	that	can	be	solved	easily?



More	examples	of	
Recurrence	Relations

1. Fibonacci	sequence:	an =	an-1	+	an-2 (n >	2)		[Given	a1 =	1,	a2 =	1]

What	is	the	formula	for	an?

2. How	many	bit	strings	of	length	n that	do	not	have	two	
consecutive	0s.

For	n=1,	the	strings	are	0 and	1
For	n=2,	the	strings	are	01,	10,	11
For	n=3,	the	strings	are	011,	111,	101,	010,	110

Do	you	see	a	pattern	here?



Example	of	Recurrence	Relations

Let an be	the	number	of	bit	strings	of	length	n that	do	not	have	two	
consecutive	0’s.

This	can	be	represented	as	an =	an-1 +	an-2 (why?)

[bit	string	of	length	(n-1)	without	a	00	anywhere]	1 (an-1)	
and	 [bit	string	of	length	(n-2)	without	a	00	anywhere]	1	0 (an-2)

an =	an-1 +	an-2	is	a	recurrence	relation.	Given	this,	can	you	find	an?	



Tower	of	Hanoi

Transfer	these	disks	from	one	peg	to	another.	However,	at	no	time,		
a	larger	disk	should	be	placed	on	a	disk	of	smaller	size.	Start	with	
64	disks.	When	you	have	finished	transferring	them	one	peg	to	another,	
the	world	will	end.



Tower	of	Hanoi

Let,	Hn =	number	of	moves	to	transfer	n disks.	Then

Hn =	2Hn-1 +1	(why?)

Can	you	solve	this	and	compute	H64?	(H1 =	1)	



Solving	Linear	Homogeneous	
Recurrence	Relations

A	linear recurrence	relation	is	of	the	form

an =	c1.an-1	+	c2.	an-2	+	c3.	an-3	+	…+	ck.	an-k

(here	c1,	c2,	…,	cn are	constants)	

Its	solution	is	of	the	form	an =	rn (where	r is	a	constant)	if	and	only	if

r is	a	solution	of

rn =	c1.rn-1	+	c2.	rn-2	+	c3.	rn-3	+	…+	ck.	rn-k

This	equation	is	known	as	the	characteristic	equation.	



Example	1

Solve:	 an =	an-1	+	2	an-2	 (Given	that	a0 =	2	and	a1 =	7)

Its	solution	is	of	the	“form” an =	rn

The	characteristic	equation is:		r2 =	r +	2, i.e.	r2 - r - 2 =	0.	
It	has	two	roots	r =	2,	and	r =	-1

The	sequence	{an}	is	a	solution	to	this	recurrence	relation	iff
an =	α1 2n +	α2 (-1)n

a0 =	2	=	α1 +	α2
a1 =	7	=	α1.	2	+	α2.(-1) This	leads	to	α1=	3,	and	α2 =	-1

So,	the	solution	is	an =	3.	2n - (-1)n



Example	2:	Fibonacci	sequence
Solve:	 fn =	fn-1	+	fn-2	 (Given	that	f0 =	0	and	f1 =	1)

Its	solution	is	of	the	form fn =	rn

The	characteristic	equation is: r2 - r - 1 =	0.	It	has	two	roots	
r =	½(1	+	√5)	and	½(1	- √5)	

The	sequence	{an}	is	a	solution	to	this	recurrence	relation	iff
fn =	α1 (½(1	+	√5))n +	α2 (½(1	- √5))n	

(Now, compute α1 and α2 from the initial conditions): α1 = 1/√5	and	 α2 = -1/√5

The	final	solution	is	fn =	1/√5.	(½(1	+	√5))n - 1/√5.(½(1	- √5))n	
L



Example	3:	Case	of	equal	roots

If	the	characteristic	equation	has	only	one	root	r0	(*),	then
the solution	will	be

an =	α1 r0n +	α2 .nr0n	

See	the	example	in	the	book.

L



Example	4:	Characteristic	equation	
with	complex	roots

Solve:	 an =	2.an-1	-2.an-2	 (Given	that	a0 =	0	and	a1 =	2)

The	characteristic	equation is: r2 - 2r	+	2 =	0.	It	has	two	roots	

(1	+	i)	and	(1	- i)	

The	sequence	{an}	is	a	solution	to	this	recurrence	relation	iff
an =	α1 (1+i)n +	α2 (1-i)n	

(Now, compute α1 and α2 from the initial conditions): α1 = - i and	 α2 = i

The	final	solution	is	an =	-i.(1+i)n +	i.(1-i)n	

Check	if	it	works!



Divide	and	Conquer	
Recurrence	Relations

• Some	recursive	algorithms	divide	a	problem	of	size	“n”	into	
“b”	sub-problems	each	of	size	“n/b”,	and	derive	the	solution	
by	combining	the	results	from	these	sub-problems.

• This	is	known	as	the	divide-and-conquer	approach

Example	1.	Binary	Search:
If	f(n)	comparisons	are	needed	to	search	an	object	from	a	list	
of	size	n,	then	

f(n)	=	f(n/2)	+	2
[1	comparison	to	decide	which	half	of	the	list	to	use,	and	1	more	to	check	if	

there	are	remaining	items]



Divide	and	Conquer	Recurrence	Relations

Example	2:	Finding	the	maximum	and	minimum	of	a	sequence

f(n)	=	2.f(n/2)	+	2

Example	3.	Merge	Sort:
Divide	the	list	into	two	sublists,	sort	each	of	them	and	then	
merge.	Here

f(n)	=	2.f(n/2)	+	n



Divide	and	Conquer	
Recurrence	Relations

Theorem.	The	solution	to	a	recurrence	relations	of	the	form	
f(n)	=	a.f(n/b)	+	c

(here	b divides	n,	a	≥	1,	b >1,	and	c is	a	positive	real	number)	is

f(n) (if	a=1)
(if	a	>1)

(See	the	complete	derivation	in	page	530)



Divide	and	Conquer	Recurrence	Relations

PROOF OUTLINE.	Given	f(n)	=	a.f(n/b)	+	c

Let	n=bk.	Then	 f(n)	=	a.[a.f(n/b2)+c]	+	c

=		a.[a.[a.f(n/b3)+c]+c]+	c and	so	on	…

=		ak.	f(n/bk)	+	c.(ak-1+ak-2+…+1)	 …	(1)

=		ak.f(n/bk)	+	c.(ak-1)/(a-1)

=		ak.f(1)	+	c.(ak-1)/(a-1) …	(2)



Divide	and	Conquer	Recurrence	Relations

PROOF OUTLINE.	Given	f(n)	=	a.f(n/b)	+	c

When	a=1,	 f(n)	=	f(1)	+	c.k (from	1)
Note	that	n=bk,	k =	logbn,	

So			f(n)	=	f(1)	+	c.	logbn
[Thus	f(n)	=	O(log n)]

When	a>1, f(n)	=	ak.[f(1)	+	c/(a-1)]	+	c/(a-1)	 [										 ]



Divide	and	Conquer	Recurrence	Relations

What	if	n ≠	bk?	The	result	still	holds.	

Assume	that	bk <	n <bk+1.

So,	f(n)	<	f(bk+1)	
f(bk+1)	 =	f(1)	+	c.(k+1)

=	[f(1)	+	c]	+	c.k
=	[f(1)	+	c]	+	c.logbn

Therefore,	f(n)	is	O(log n)



Divide	and	Conquer	Recurrence	Relations

Apply	to	binary	search

f(n)	=	f(n/2)	+	2
The	complexity	of	binary	search f(n)	 (since	a=1)

What	about	finding	the	maximum	or	minimum	of	a	sequence?
f(n)	=	2f(n/2)	+	2

So,	the	complexity	is	f(n)	



Master	Theorem

Note	that	there	are	four	parameter:	a,	b,	c,	d


