
Group Communication	

A group is a collection of users sharing some common
interest.Group-based activities are steadily increasing.

There are many types of groups:
¨  Open group (anyone can join, customers of Walmart)
¨  Closed groups (membership is closed, class of 2000)

¨  Peer-to-peer group (all have equal status, graduate students of CS
department, members in a videoconferencing / netmeeting)

¨  Hierarchical groups (one or more members are distinguished from the rest.
President and the employees of a company, distance learning).

Major issues	

Various forms of multicast to communicate with the members.
Examples are
¨  Atomic multicast
¨ Ordered multicast

Dynamic groups
¨  How to correctly communicate when the membership constantly

changes?
¨  Keeping track of membership changes

Atomic multicast	

 A multicast is atomic, when the message is delivered to
every correct member, or to no member at all.

 In general, processes may crash, yet the atomicity of
the multicast is to be guaranteed.

 How can we implement atomic multicast?

Basic vs. reliable multicast	

Basic multicast does not consider failures.
Reliable multicast tolerates (certain kinds of) failures.

Three criteria for basic multicast:

Liveness. Each process must receive every message
Integrity. No spurious message received
No duplicate. Accepts exactly one copy of a message

Reliable atomic multicast	

Sender’s program Receiver’s program
i:=0; if m is new →
do i ≠ n → accept it;
 send message to member [i]; multicast m;
 i:= i+1 [] m is duplicate → discard m
od fi

Tolerates process crashes. Why does it work?

Multicast support in networks	

 Multicast is an extremely important operation in networking,
and there are numerous protocols for multicast.

 Sometimes, certain features available in the infrastructure of
a network simplify the implementation of multicast.
Examples are

 Multicast on an ethernet LAN
 IP multicast for wide area networks

 IP Multicast	

 IP multicast is a bandwidth-conserving technology where the
router reduces traffic by replicating a single stream of
information and forwarding them to multiple clients. Very
popular for for streaming content distribution.

 Sender sends a single copy to a special multicast IP address
(Class D) that represents a group, where other members register.

 IP Multicast	

 Internet radio. BBC has encouraged UK-based Internet service providers to
adopt multicast-addressable services in their networks by providing BBC Radio at
higher quality than is available via their unicast-addressed services.

 Instant movie or TV. Netflix uses a version of IP multicast for the instant
streaming of their movies at homes through the Blu-ray Disc players

 Distance learning. Involves live transmission of the course material to a large
number of students at geographically distributed locations.

Distribution trees	

A

B

C

D

E

F

1

4

2

7

2

15

1

6

A

B

C

D

E

F

1

4

2

7

2

15

1

6

source

source

source

rendezvous point

(a) Source tree

(b) Shared tree

Source is the root
of a spanning tree

Routers maintain & update
distribution trees whenever
members join / leave a group

All multicasts are Routed
via a Rendezvous point.
The shared tree is also
called core-based tree.

Too much load on routers.
Application layer multicast
overcomes this.

Uses shortest path trees.
One tree for each source

Distribution trees	

The routers have to know about group composition. As groups
memberships change, routers have to be updated.

Too much load on routers.

Application layer multicast overcomes this. The responsibility of
multicast is left to the applications layer. Each multicast is
implemented as a series of unicasts.

Reverse Path Forwarding	

RPF is a multicast algorithm that uses both source and destination

addresses. Each recipient of a packet from a source node

  looks up source address in its own routing table

  compares route entry with receiving interface

  if wrong interface (other than the shortest path port), drop

(Note: the packet must be received on the interface that the router would use to forward

the return packet. This prevents possible looping as in flooding, IP spoofing etc.)

  for each outgoing interface with group members downstream, forward the packet.

Reverse Path Forwarding	

The blue link denotes the first hop
for the return path to the source. The
messages represented by the red
arrows will be dropped

Ordered multicasts:���
Basic versions only	

Total order multicast. Every member must receive all updates in
the same order. Example: consistent update of replicated data
on servers

Causal order multicast. If a, b are two updates and a happened
before b, then every member must accept a before accepting
b. Example: implementation of a bulletin board.

Local order (a.k.a. Single source FIFO). Example: video
distribution, distance learning using “push technology.”	

Implementing total order multicast	

First method. Basic multicast using a sequencer

{The sequencer S}
define seq: integer (initially 0}
do receive m →

 multicast (m, seq);
 seq := seq+1;
 deliver m

od

sequencer

Implementing total order multicast	

Second method. Basic multicast without a sequencer.
Uses the idea of 2PC (two-phase commit)

3 18 22

4 6 19

7 10 14

p

q

r

Implementing total order multicast	

Step 1. Sender i sends (m, ts) to all

Step 2. Receiver j saves it in a holdback queue, and
sends an ack (a, ts)

Step 3. Receive all acks, and pick the largest ts. Then
send (m, ts, commit) to all.

Step 4. Receiver removes it from the holdback queue
and delivers m in the ascending order of timestamps.

 Why does it work?

Implementing causal order multicast	

Basic multicast only. Uses
vector clocks. Recipient i will
deliver a message from j iff

1. VCj(j) = LCj(i) + 1
 {LC = local vector clock}

2. ∀k: k≠j :: VCk(j) ≤ LCk(i)

VC = incoming vector clock
LC = Local vector clock

1,0,0 2,1,0
0,0,0

0,0,0

0,0,0

1,1,0

2,1,1

? (violation)

(1,0,0)

(1,1,0)

(2,1,0)
(1,0,0)

(1,0,0) (1,1,0) (2,1,0)

P0

P1

P2

m1 m1 m2

m2

m3

m3

Note the slight difference in the "
implementation of the vector clocks"

Reliable multicast	

	
Tolerates process crashes. The additional requirements are:

 Only correct processes are required to receive the messages
from all correct processes in the group. Multicasts by faulty
processes will either be received by every correct process, or
by none at all.

A theorem on reliable multicast	

 Theorem.	

	
In an asynchronous distributed system, total order
reliable multicasts cannot be implemented when even a
single process undergoes a crash failure. 	

	
(Hint) The implementation will violate the FLP
impossibility result. Complete the arguments!	

Scalable Reliable Multicast	

 IP multicast or application layer multicast provides unreliable
datagram service. Reliability requires the detection of the message
omission followed by retransmission. This can be done using ack.
However, for large groups (as in distance learning applications or
software distribution) scalability is a major problem.

 The reduction of acknowledgements and retransmissions is the main
contribution in Scalable Reliable Multicasts (SRM) (Floyd et. al).

Scalable Reliable Multicast	

If omission failures are rare, then then instead of using ACK,
receivers will only report the non-receipt of messages using
NACK.

If several members of a group fail to receive a message, then
each such member waits for a random period of time before
sending its NACK. This helps to suppress redundant NACKs.
Sender multicasts the missing copy only once.

Use of cached copies in the network and selective point-to-point
retransmission further reduces the traffic.

Scalable Reliable Multicast	

 Receiving processes have to detect the non receipt of
messages from the source. Each member periodically
broadcasts a sessions message containing the largest
sequence number received by it. Other members figure out
which messages they did not receive.

Scalable Reliable Multicast	

Source sending
m[0], m[1], m[2] …

Missed m[7]
and sent NACK

Missed m[7]
and sent NACK Missed m[7]

and sent NACK

m[7] cached
here

m[7] cached
here m[7]

m[7]

Dealing with open groups	

The view of a process is its current knowledge of the membership.
It is important that all processes have identical views.
Inconsistent views can lead to problems. Example:

Four members (0,1,2,3) will send out 144 emails.

Assume that 3 left the group but only 2 knows about it. So,
0 will send 144/4 = 36 emails (first quarter 1-36)
1 will send 144/4 = 36 emails (second quarter 37-71)
2 will send 144/3 = 48 emails (last one-third 97-144)
3 has left. The mails 72-96 will not be delivered!

Dealing with open groups	

Views can change unpredictably, and no member may
have exact information about who joined and who left at
any given time.

These views and their changes should propagate in the
same order to all members.

Dealing with open groups	

Example. Current view (of all processes) v0(g) = {0, 1, 2, 3}.
Let 1, 2 leave and 4 join the group concurrently. This view change
can be serialized in many ways:

•  {0,1,2,3}, {0,1,3} {0,3,4}, OR
•  {0,1,2,3}, {0,2,3}, {0,3}, {0,3,4}, OR
•  {0,1,2,3}, {0,3}, {0,3,4}

To make sure that every member observe these changes in the same
order, changes in the view should be sent via total order multicast.

View propagation	

{Process 0}:

•  v0(g); v0(g) = {0,1,2,3},
•  send m1, ... ;
•  v1(g);
•  send m2, send m3; v1(g) = {0,1,3},
•  v2(g) ;

{Process 1}: v2(g) = {0,3,4}
•  v0(g);
•  send m4, send m5;
•  v1(g);
•  send m6;
•  v2(g) ...;

View delivery guidelines	

 Rule 1. If a process j joins and continues its membership in

a group g that already contains a process i, then eventually

j appears in all views delivered by process i.

 Rule 2. If a process j permanently leaves a group g that

contains a process i, then eventually j is excluded from all

views delivered by process i.

View-synchronous communication	

	
Rule. With respect to each message, all
correct processes have the same view.	

	
m sent in view V ⇒ m received in view V

 This is also known as virtual synchrony	

View-synchronous communication	

Agreement. If a correct process k delivers a
message m in vi(g) before delivering the
next view vi+1(g), then every correct
process j ∈ vi(g) ∩ vi+1(g) must deliver m
before delivering vi+1(g).

Integrity. If a process j delivers a view vi(g),
then vi(g) must include j.

Validity. If a process k delivers a message m
in view vi(g) and another process j ∈ vi(g)
does not deliver that message m, then the
next view vi+1(g) delivered by k must
exclude j.

vi(g) vi+1(g), m

vi(g) vi+1(g), m

Sender k

Receiver j

Example	

Let process 1 deliver m and then crash.

Possibility 1. No one delivers m, but
each delivers the new view {0,2,3}.

Possibility 2. Processes 0, 2, 3
deliver m and then deliver the new
view {0,2,3}

Possibility 3. Processes 2, 3 deliver
m and then deliver the new view
{0,2,3} but process 0 first delivers
the view {0,2,3} and then delivers m.

Are these acceptable?

0

1

2

3
{0,1,2,3} {0,2,3}

m

m

m

Possibility 3

Overview of Transis	

What is Transis?

 A group communication system developed by Danny
Dolev and his group at the Hebrew University of
Jerusalem. (see http://www.cs.huji.ac.il/labs/transis/).
Important objectives of Transis are to develop a
framework for Computer Supported Cooperative
Work (CSCW) applications, such as multi-media and
desktop conferencing, as well as a scalable Video-
on-demand service.

•  Deals with open group

Overview of Transis (2)	

What is Transis?

•  Deals with open group

•  Supports scalable reliable multicast

•  Tackles network partition. Allows the
partitions to continue working and later
restore consistency upon merger

Overview of Transis (3)	

1. IP multicast (and ethernet LAN) used to support high bandwidth multicast.

2. ACK and NACK are piggybacked with the next message and message

loss is detected transparently, leading to selective retransmission. Example:

A process that receives A1, A2, a2B1, b3C1 … suspects that it did not receive

message B2 and B3, and sends a NACK to request their retransmission.

It will postpone sending c1 until it received B2 and B3

Overview of Transis (4)	

FIFO	 (single	 source)	

Causal	 mode	 (maintains	 causal	 order)	

Agreed	 mode	 (maintains	 total	 order	 that	 does	 not	 conflict	

with	 the	 causal	 order)	

Safe	 mode	 (Delivers	 a	 message	 only	 a8er	 all	 processes	 in	 the	

current	 configura;on	 have	 acknowledged	 its	 recep;on)	 If	 safe	

message	 M	 is	 delivered	 in	 a	 configura;on	 that	 includes	

process	 P,	 then	 P	 will	 deliver	 M	 unless	 it	 crashes.	 	

Overview of Transis (5)	

Each partition assumes that
the machines in the other
partition have failed, and maintains
virtual synchrony within its own
partition only.

After repair, consistency is restored
in the entire system.

Dealing with partition

Dealing with partitions	

Assume that when A was sending a safe message M, the configuration
changed to {A, B, C} → {A, B}, {C}.

Case 1. All but C sent ack to A, B. Now, to deliver M, A, B must receive
the new view {A,B} first.

A

B

C M
ack ?

M

Extended virtual synchrony

Dealing with partitions	

Assume A was sending a safe message M, and the configuration
changed to {A, B, C} → {A, B}, {C}.

Case 2. If C ack’ed M and also received acks from A and B before the
 partition, then C will deliver M before it receives the new view {C}.

A

B

C M
ack

M

Otherwise, C will ignore message M as spurious without contradicting
any guarantee.

Continuing operation in spite of a
partition	

Electronic Town Hall

A B

C

D

E

Polling booth

Polling booth

Polling booth

Polling booth

Votes are counted manually at each booth. The count of each vote is multicast to
every other booth, so that the latest count is displayed at each booth. Apparently, if a
single wire breaks, the counting will stop.

However, it is silly. Counting could easily continue at the individual booths, and
the results could be merged later. This is the Transis approach: supporting
operations within partitions whenever possible.

Polling booth

