Faults and fault-tolerance

One of the selling points of a distributed system is
that the system will continue to perform (at some

level) even if some components / processes / links
fail.



Cause and effect

Study examples of what causes what.

We view the effect of failures at our level of abstraction,
and then try to mask it, or recover from it.

Reliability and availability

MTBF (Mean Time Between Failures) and MTTR (Mean
Time To Repair) are two commonly used metrics in the
engineering world



A classification of failures

* Crash failure

* Omission failure
* Transient failure
» Software failure
 Security failure

* Byzantine failure
» Temporal failure

* Environmental perturbations



Crash failures

Crash failure = the process halts. It is irreversible.

Crash failure is a form of “nice” failure. In a synchronous system, it
can be detected using timeout, but in a asynchronous system, crash
detection becomes tricky.

Some failures may be complex and nasty. Fail-stop failureisa
simple abstraction that mimics crash failure when process behavior

becomes arbitrary. Implementations of fail-stop behavior help detect
which processor has failed.

If a system cannot tolerate fail-stop failure, then it cannot tolerate
crash.



Omission failures

Message lost in transit. May happen due to various
causes, like

— Transmitter malfunction

— Buffer overflow

— Collisions at the MAC layer
— Receiver out of range



Transient failure

(Hardware) Arbitrary perturbation of the global state. May be
induced by power surge, weak batteries, lightning, radio-
frequency interferences, cosmic rays etc.

Not Heisenberg

(Software) Heisenbugs are a class of temporary internal
faults and are intermittent. They are essentially permanent
faults whose conditions of activation occur rarely or are not
easily reproducible, so they are harder to detect during the
testing phase.

Over 99% of bugs in IBM DB2 production code are non-
deterministic and transient (Jim Gray)



Software failures

Coding error or human error

On September 23, 1999, NASA lost the $125 million Mars orbiter

spacecraft because one engineering team used metric units while
another used English units leading to a navigation fiasco, causing it to
burn in the atmosphere.

Design flaws or inaccurate modeling

Mars pathfinder mission landed flawlessly on the Martial surface on

July 4, 1997. However, later its communication failed due to a design
flaw in the real-time embedded software kernel VxWorks. The
problem was later diagnosed to be caused due to priority inversion,
when a medium priority task could preempt a high priority one.



Software failures (continued)

Memory leak

Operating systems may crash when processes fail to entirely free up the

physical memory that has been allocated to them. This effectively
reduces the size of the available physical memory over time. When this
becomes smaller than the minimum memory needed to support an
application, it crashes.

Incomplete specification (example Y2K)
Year =09 (1909 or 2009 or 2109)?

Many failures (like crash, omission etc) can be caused by
software bugs too.



Temporal failures

Inability to meet deadlines — correct results
are generated, but too late to be useful.
Very important in real-time systems.

May be caused by poor algorithms, poor
design strategy or loss of synchronization

among the processor clocks.



Environmental perturbations

Consider open systems or dynamic

systems. Correctness is related to the

environment. If the environment

changes, then a correct system A system of
becomes incorrect. Traffic lights
Example of environmental parameters: ﬁ
time of day, network topology, user

demand etc. Essentially, distributed Time of day

systems are expected to adapt to the
environment



Security problems

Security loopholes can lead to failure. Code or
data may be corrupted by security attacks. In
wireless networks, rogue nodes with powerful
radios can sometimes impersonate for good
nodes and induce faulty actions.



Byzantine failure

Anything goes! Includes every conceivable form

of erroneous behavior. It is the weakest type of
failure.

Numerous possible causes. Includes malicious

behaviors (like a process executing a different
program instead of the specified one) too.

Most difficult kind of failure to deal with.



Specification of faulty behavior

(Most faulty behaviors can be modeled as a fault action F superimposed
on the normal action S. This is for specification purposes only)

program  example1;

define X . boolean (initially x = true);
{a, b are messages);
do {S}; x—send a {specified action}

[l {F}: true —send b {faulty action}

.

aaaabaaabbaaaaaaa...



Fault-tolerance

of type F

F-intolerant vs F-tolerant systems /Asystem thate}

Ltolerates failur

Four types of tolerance:

faults
- Masking
- Non-masking %
- Fail-safe é ..
- Graceful degradation %




Fault-tolerance

P is the invariant of the
original fault-free system

Q represents the worst
possible behavior of the

system when failures occur.
It is called the fault span.

Q s closed under S or F.



Fault-tolerance

Masking tolerance: P = Q

(neither safety nor liveness is violated)

Non-masking tolerance: P C Q
(safety property may be temporarily
violated, but not liveness). Eventually

safety property is restored.




Classifying fault-tolerance

Masking tolerance.
Application runs as it is. The failure does not have a visible impact.
All properties (both liveness & safety) continue to hold.

Non-masking tolerance.
Safety property is temporarily affected, but not liveness.

Example 1. Clocks lose synchronization, but recover soon thereafter.
Example 2. Multiple processes temporarily enter their critical sections,
but thereafter, the normal behavior is restored.

Example 3. A transaction crashes, but eventually recovers



Backward vs. forward error recovery

These are two forms of non-masking tolerance:

Backward error recovery

When safety property is violated, the computation rolls back and
resumes from a previous correct state.

M » | time
rollback

Forward error recovery
Computation does not care about getting the history right, but

moves on, as long as eventually the safety property is restored.
True for self-stabilizing systems.




Classifying fault-tolerance

Fail-safe tolerance
Given safety predicate is preserved, but liveness may be affected

Example. Due to failure, no process can enter its critical section for
an indefinite period. In a traffic crossing, failure changes the traffic in
both directions to red.

Graceful degradation
Application continues, but in a “degraded” mode. Much depends on
what kind of degradation is acceptable.

Example. Consider message-based mutual exclusion. Processes will
enter their critical sections, but not in timestamp order.



Failure detection

The design of fault-tolerant systems will be easier
if failures can be detected. Depends on the

1. System model, and
2. The type of failures.

Asynchronous models are more tricky. We first
focus on synchronous systems only



Detection of crash failures

Failure can be detected using heartbeat messages
(periodic “| am alive™ broadcast) and timeout

- if processors speed has a known lower bound
- channel delays have a known upper bound.

True for synchronous models only. We will address
failure detectors for asynchronous systems later.



Detection of omission failures

For FIFO channels: Use sequence numbers with messages.

(1, 2, 3,5, 6...) = message 5 was received but not
message 4 = message must be is missing

Non-FIFO bounded delay channels delay - use timeout
(Message 4 should have arrived by now, but it did not)

What about non-FIFO channels for which the upper bound
of the delay is not known?

-- Use sequence numbers and acknowledgments. But
acknowledgments may also be lost.

We will soon look at a real protocol dealing with omission failure ....



Detection of transient failures

The detection of an abrupt change of state
from S to S’ requires the periodic

computation of local or global snapshots of
the distributed system. The failure is locally

detectable when a snapshot of the

distance-1 neighbors reveals the violation

of some invariant.

Example: Consider graph coloring



Detection of Byzantine failures

A system with 3f+1 processes is considered adequate for

(sometimes) detecting (and definitely masking) up to

f byzantine faults.

More on Byzantine faults later.



Tolerating crash failures

It is possible to tolerate f crash failures using (f+1) servers. So for tolerating a

single crash failure, Double Modular Redundancy (DMR) is adequate

Faulty
replicas
User querying the
replica servers




Triple Modular Redundancy

Triple modular redundancy (TMR) for masking any single failure.

\X

(} —> User takes
X a vote
x

N-modular redundancy masks up to m failures, when N = 2m +1



Tolerating omission failures

A central issue in networking

Routers may drop messages, but

reliable end-to-end transmission is an l

important requirement. If the sender ‘ _ @
does not receive an ack within a time period,

it retransmits (it may so happen that the router

was not lost, so a duplicate is generated).
This implies, the communication must
tolerate Loss, Duplication, and Re-ordering
of messages



Stenning’s protocol

{program for process S}

define ok : boolean; next: integer;

initially next = 0, ok = true, both channels are empty;

do ok — send (m[next], next); ok:=false

[ (ack, next)is received — ok:=true; next := next + 1
[ timeout(R,S)— send (m[next], next)

od

{program for process R}

define r : integer;

initially r=0;

do (m[],s)isreceived As=r — accept the message;
send (ack, r);
r=r+1

[ (m[],s)isreceived As#r — send (ack, r-1)
od

mO

m1

m2

Sender S
<—’

m3

next ok

m4

m5

m M[0], 0

|

ack1

Receiver R



Observations on Stenning’s protocol

Both messages and acks may be lost

Q. Why is the last ack reinforced by R when s#r?

A. Needed to guarantee progress.

Progress is guaranteed, but the protocol

IS inefficient due to low throughput.

Sender S

m M[0], 0

Al

ackT

Receiver R



Observations on Stenning’s protocol

Sender S (s=1)

Receiver R(r=2)

If the last ack is not reinforced
by the receiver when s#r, then
the following scenario is possible

-- The ack of m[1] is lost.

-- After timeout, S sends m[1] again.

-- But R was expecting m[2], so does not
send ack.

And S keeps sending m[1] repeatedly.
This affects progress.



Sliding window protocol

last + w
ﬁ
[ (s,1)
next ~ ® o ~
J
accepted
\ ; (t. s) messages

The sender continues the send action
without receiving the acknowledgements of at most
w messages (w > 0), w 1s called the window size.



Sliding window protocol

last next
mO m1l m?2 m3 m4 m5 m6 m7 m8 Sender
window
h 4
mO m1l m?2 m3 m4 m5 m6 m7 m8 Receiver
j
last next
mO ml m?2 m3 m4 mb5 m6 m7 m8
window
mO ml m2 m3 m4 m5 m6 m7 m8

Sender

Receiver



Sliding window protocol

{program for process S}
define next, last, w: integer;
initially next=0, last=-1,w>0

do last+1 <next<last+w —
send (m[next], next); next:=next + 1
[l (ack, j) is received —>
if j>last— last:=]
[ j<last —» skip
fi
[] timeout (R,S) — next := last+1
{retransmission begins}
od

{program for process R}
define j : integer;
initially j = 0;

do (m[next], next) is received —

if j = next —» accept message;
send (ack, j);
j:=j+1
[] j#next — send (ack, j-1)
fi;
od



KExample

Window size =5
(last=-1) 4,3,2,1,0 (2islost) 4,1,3,0 5
(next=5) (j=0)
E— (m[0, m[1] accepted, but

_ 4,1, 3 [3]-m[4] are not)
last= -1 m
(last=-1) 4,3,2,1,0 (2is lost) )
(next=5) (j=2)

0,0,1,1

— >
last=1
(fast=1) 6,5,4,3,2 3
(next=5) (j=2)
timeout




Observations

Lemma. Every message is accepted exactly once.
(Note the difference between reception and acceptance)

Lemma. Message m[k] is always accepted before m[k+1].
(Argue that these are true. Consider various scenarios of

omission failure)

Uses unbounded sequence number.
This is bad. Can we avoid it?



Theorem

If the communication channels are non-FIFO, and the

message propagation delays are arbitrarily large, then
using bounded sequence numbers, it is impossible to

design a window protocol that can withstand the (1) loss,

(2) duplication, and (3) reordering of messages.



Why unbounded sequence no?

New message Retransmitted

using the same version of m
seq number k

We want to accept m” but reject m’. How is that possible?



Alternating Bit Protocol

m[1],17  m][0],0 m[0],0

ack, 0

ABP is a link layer protocol. Works on FIFO channels only.
Guarantees reliable message delivery with a 1-bit sequence

number (this is the traditional version with window size = 1).
Study how this works.



Alternating Bit Protocol

program ABP;
{program for process S}

define sent,b : 0or1; next: integer;
initially next =0, sent=1, b =0, and channels are empty; S

dosent#b — send (m[next], b);
next := next+1; sent:=b

[] (ack, j) is received — if j=b —b:=1-b

[]j # b — skip

fi
] ctiimeout (R,S) — send (m[next-1], b) m[0].0@
0
{program for process R}
definej : 0or1; {initially j=0};
do (m[ ], b) is received —

if j=b — accept the message; ®
send (ack, j); ji=1-]

[]] # b — send (ack, 1))
fi

m[1],1 @

@ a0

m[0],0@

od



How TCP works

S R
(SYN, seq = x)
SYN »
SYN, seq=y,ack =x+1 SYN — ACK
ACK ack=y+1

—» End of 3-way handshake

m[ ], seqg=x+1,ack=y+1

gzt ack =yt |

m[ ], seq=y+1, ack=x+2 >m93339€j .
< communication
(9]
o J
FIN FIN, seq=y+t,ack=x+t
—>
FIN, seq=y+t+1,ack=x+t+1 | prnv ack
<—
ACK

‘._ 1
ack = x+1+2 Connection closed

Three-way handshake. Sequence numbers are unique w.h.p.



TCP sequence numbers

Supports end-to-end logical connection between any two computers on the
Internet. Basic idea is the same as those of sliding window protocols. But TCP uses

bounded sequence numbers (32 or 64 bits)!

The primary issue here is to prevent another connection from reusing an existing
sequence number, such re-use may open the door for an attack. By correctly
guessing (or acquiring) an existing sequence number, the attacker may inject
arbitrary messages that will be accepted by the receiver as valid messages from the
sender. The use of a random initial sequence numbers by the sender and the

receiver prevents it.



TCP sequence numbers

There is the potential of old packets with sequence numbers
belonging to an acceptable window appearing into the system.
These are prevented by automatically killing old packets (using

TTL) after a time = 2d, where d is the round trip delay.



How TCP works: Various Issues

*Why is the knowledge of roundtrip delay important?
--Timeout can be correctly chosen
« What if the timeout period is too small / too large?

» What if the window is too small / too large?

* Adaptive retransmission: receiver can throttle sender

and control the window size to save its buffer space.



