Question 3 (10 points)
This question asks you to study reachability. Reachability is a liveness property. A global state S' is reachable from another global state S, if there exists a valid computation (i.e. a sequence of states and state transitions) that leads the systems from S to S'. We consider an example from Petri nets that represent asynchronous control structures.

In a Petri net, each circle is called a place and it denotes a condition. Each box represents a transition that represents an event. A token in a place implies that the condition holds. For a given transition, if every input place has a token, then the transition fires (i.e. the event takes place), all tokens disappear from the input places, and every output place of the transition acquires a token. The global state consists of the set of places that have a token.

![Petri net diagram]

Let $S = \{p_4, p_5, p_6, p_7\}$ and $S' = \{p_1, p_2, p_3, p_8\}$ Is S' reachable from S? Justify your answer.

Question 4. (10 points)
In a computation running on a distributed system, let S be the initial state, and S' be a terminal state (a state in which the system does not have any eligible action, and all channels are empty). Also, assume that S' is reachable from S. Will the distributed computation always terminate?

Explain your answer. If necessary, use examples.