22C:160/55:132 Homework 2 sample solutions

Chen Zhang

These are sample solutions, and there are other correct solutions too. Question 1.
a) No additional components needed.

Fetch:
IR $<=$ Memory $[P C] ;$
$\mathrm{PC}<=\mathrm{PC}+4$;
Decode:
$\mathrm{A}<=\operatorname{Reg}[\operatorname{IR}[25: 21]]$;
Excution:
ALUOut $<=$ A + sign-extend(IR[15-0])
R-Type Completion:
$\operatorname{Reg}[\operatorname{IR}[15: 11]]<=$ ALUOut
b) No addtional components needed.

Fetch:	$\mathrm{IR}<=$ Memory $[\mathrm{PC}] ;$
	$\mathrm{PC}<=\mathrm{PC}+4 ;$

Decode: $\quad \mathrm{A}<=\operatorname{Reg}[\operatorname{IR}[25: 21]]$; $\mathrm{B}<=\operatorname{Reg}[\operatorname{IR}[20: 16]]$ - assume these bits are all 0s
Excution: \quad ALUOut $<=\mathrm{A}+\mathrm{B}$
Completion: $\quad \mathrm{PC}<=$ ALUOut
c) A shift-left-16 component is needed for instruction[15-0] to multiplexer for ALU operand B.

Fetch: $\quad \mathrm{IR}<=$ Memory $[\mathrm{PC}]$; $\mathrm{PC}<=\mathrm{PC}+4$;
Decode: $\quad \mathrm{A}<=\operatorname{Reg}[\operatorname{IR}[25: 21]] ;-$ assume these bits are all 0 s
Excution: \quad ALUOut $<=\mathrm{A}+$ shift-left-16(IR[15-0])
Completion: $\quad \operatorname{Reg}[\operatorname{IR}[20-16]]<=$ ALUOut;
Question 2.

Figure 1 shows the data path of such a processor.

Fetch:	IR $<=$ IMemory $[\mathrm{PC}] ;$
	$\mathrm{PC}<=\mathrm{PC}+6 ;$
Decode:	$\mathrm{A}<=\mathrm{DMemory}[\operatorname{IR}[47-32]] ;$
	$\mathrm{B}<=\mathrm{DMemory}[\operatorname{IR}[31-16]]$
Excution:	ALUOut $<=\mathrm{A}-\mathrm{B}$
Completion:	DMemory $[\operatorname{IR}[31-16]]<=$ ALUOut
	if $($ ALUOut $<0) \mathrm{PC}<=\mathrm{IR}[15-0] ;$

Figure 2 shows the state machine of this processor.

Figure 1: Datapath for 1-instrction processor

PCWrite $=\mathrm{S} 0+\mathrm{s} 3$ MemRead $=\mathrm{S} 1$ MemWrite $=\mathrm{S} 3$ ALUOp $=\mathrm{S} 2$ IRWrite $=\mathrm{S} 0$
Question 3

```
add r3,r4,r2 \(\quad\) F \(\quad\) D \(\quad\) X \(\quad\) M \(\quad\) W
sub r5,r3,r1 \(\quad\) O \(\quad\) O \(\quad\) F \(\quad\) D
lw r6,200(r3)
add \(\mathrm{r} 7, \mathrm{r} 3, \mathrm{r} 6\)
\(\begin{array}{llll}\text { X } & \text { M } & \text { W } & \\ D & X & \text { M } & \text { W }\end{array}\)
\(\begin{array}{llllllll}\text { O } & \mathrm{O} & \mathrm{O} & \mathrm{F} & \mathrm{D} & \mathrm{X} & \mathrm{M} & \mathrm{W}\end{array}\)
```

Achange in the order can save one cycle

```
add r3,r4,r2 F D D X M W
lw r6,200(r3) O
sub r5,r3,r1 F
add r7,r3,r6 O
```


Figure 2: state machine

