22C:160/55:132 Homework 2 sample solutions

Chen Zhang

These are sample solutions, and there are other correct solutions too. Question 1. a) No additional components needed. $IR \le Memory[PC];$ Fetch: $PC \le PC + 4;$ $\mathbf{A} <= \operatorname{Reg}[\operatorname{IR}[25:21]];$ Decode: Excution: $ALUOut \le A + sign-extend(IR[15-0])$ $\operatorname{Reg}[\operatorname{IR}[15:11]] \le \operatorname{ALUOut}$ R-Type Completion: b) No additional components needed. Fetch: $IR \le Memory[PC];$ $PC \leq PC + 4;$ A <= Reg[IR[25:21]];Decode: $B \le Reg[IR[20:16]] - assume these bits are all 0s$ $ALUOut \le A + B$ Excution: Completion: $PC \le ALUOut$

c) A shift-left-16 component is needed for instruction[15-0] to multiplexer for ALU operand B.

Fetch:	$IR \le Memory[PC];$
	$PC \le PC + 4;$
Decode:	$A \le Reg[IR[25:21]];$ - assume these bits are all 0s
Excution:	$ALUOut \le A + shift-left-16(IR[15-0])$
Completion:	$\operatorname{Reg}[\operatorname{IR}[20-16]] \le \operatorname{ALUOut};$

Question 2.

Figure 1 shows the data path of such a processor.

Fetch:	IR < = IMemory[PC];
	$PC \le PC + 6;$
Decode:	$A \leq DMemory[IR[47-32]];$
	$B \le DMemory[IR[31-16]]$
Excution:	$ALUOut \le A - B$
Completion:	$DMemory[IR[31-16]] \le ALUOut$
	if (ALUOut < 0) PC $\leq =$ IR[15-0];

Figure 2 shows the state machine of this processor.

Figure 1: Datapath for 1-instrction processor

 $\label{eq:pcWrite} \text{PCWrite} = \text{S0} + \text{s3} \text{ MemRead} = \text{S1} \text{ MemWrite} = \text{S3} \text{ ALUOp} = \text{S2} \text{ IRWrite} = \text{S0}$

Question 3

add r3,r4,r2	\mathbf{F}	D	Х	Μ	W								
sub r5,r3,r1		Ο	Ο	\mathbf{F}	D	Х	Μ	W					
lw r6,200(r3)					\mathbf{F}	D	Х	Μ	W				
add $r7,r3,r6$						Ο	Ο	Ο	\mathbf{F}	D	Х	Μ	W

Achange in the order can save one cycle

add r3,r4,r2	\mathbf{F}	D	Х	Μ	W							
lw r6,200(r3)		Ο	Ο	\mathbf{F}	D	Х	Μ	W				
sub r5,r3,r1					\mathbf{F}	D	Х	Μ	W			
add r7, $r3,r6$						Ο	Ο	\mathbf{F}	D	Х	Μ	W

Figure 2: state machine