

Pipelined processors and Hazards
Two options

 Processor

HLL Output
Program

 Control unit

1. Either the control unit can be smart, i,e. it can delay

instruction phases to avoid hazards. Processor cost

increases.

2. The compiler can be smart, i.e. produce optimized

codes either by inserting NOPs or by rearranging

instructions. The cost of the compiler goes up.

Compiler LU ALU

Instruction Reorganization by Compiler

To avoid data hazards, the control unit can insert bubbles.

As an alternative, the compiler can use NOP instructions.

Example: Compute a: = b + c; d: = e + f
(a, b, c, d, e, f are stored in the memory)

 LW R1, b LW R1, b
 LW R2, c LW R2, c
 ADD R3, R1, R2 NOP
 SW a, R3 NOP
 LW R1, e ADD R3, R1, R2
 LW R2, f NOP
 SUB R3, R1, R2 SW a, R3
 SW d, R3 LW R1, e
 LW R2,f
 NOP

NOP
SUB R3, R1, R2
NOP

 SW d, R3

Original code Code generated by a smart compiler

Instruction Reorganization by Compiler

The compiler can further speedup by reorganizing the

instruction stream and minimizing the no of NOP’s.

Example: Compute a: = b + c; d: = e + f

 LW R1,b LW R1,b
 LW R2,c L W R2,c
 ADD R3, R1, R2 LW R4, e
 SW a, R3 LW R5, f
 LW R1, e ADD R3,R1,R2
 LW R2,f NOP
 SUB R3, R1, R2 SW a, R3
 SW d, R3 SUB R6, R5, R4
 NOP

SW d, R6
NOP

Original code Code reorganized by a smart compiler

(Control unit remains unchanged)

Note the reassignment of registers

Virtual memory

 L1 L2

Goals

1. Creates the illusion of a address space much
larger than the physical memory

2. Make provisions for protection

The main idea is that if a virtual address is not mapped into

the physical memory, then it has to be fetched from the disk.

The unit of transfer is a page (or a segment). Observe the

similarities (as well as differences) between virtual memory

and cache memory. Also, recall how slow is the disk (~ ms)

to the main memory (50 ns). So each miss (called a page
fault or a segment fault) has a large penalty.

 P M
I D

What is a page? What is a segment?

A page is a fixed size fragment (say 4KB or 8 KB) of code or

data. A segment is a logical component of the code (like a

subroutine) or data (like a table). The size is variable.

VM Types

Segmented, paged, segmented and paged.

Page size 4KB –64 KB
Hit time 50-100 CPU clock cycles
Miss penalty

 Access time

 Transfer time

106 - 107 clock cycles

0.8 x 106 –0.8 x 107 clock cycles

0.2 x 106 –0.2 x 107 clock cycles
Miss rate 0.00001% - 0.001%
Virtual address

Space size
4 GB -16 x 1018 byte

A quick look at different types of VM

 Segment sizes
 are not fixed

 Page sizes
 are fixed

 Segments can
 be paged

A segment

A page Page frame
or block

Address Translation

 Virtual address
 page
 table
 Physical address

Page Table format for Direct Map
Page

 No.
Presence

 bit
Block no./ Disk addr Other attributes

like protection
0 1 7 Read only

1 0 Sector 6, Track 18

2 1 45 Not cacheable

3 1 4

4 0 Sector 24,Track 32

Page Table format for Associative Map
Pg, Blk, P Block no./ Disk addr Other attributes
0, 7, 1 7 Read only

1, ?, 0 Sector 6, Track 18

2, 45, 1 45 Not cacheable

3, 4, 1 4

4, ?, 0 Sector 24, Track 32

Page Number Offset

Block Number Offset

Address translation overhead
Hit time involves one extra table lookup. Can we

reduce this overhead?

Average Memory Access Time = Hit time (no page fault)

+ Miss rate (page fault rate) x Miss penalty

Examples of VM performance

Hit time = 50 ns.

Page fault rate = 0.001%

Miss penalty = 2 ms

Tav = 50 + 10-5 x 2 x 106 ns = 70 ns.

Improving VM Performance

1. Hit time involves one extra table lookup. Hit time

can be reduced using a TLB

(TLB = Translation Lookaside Buffer).

2. Miss rate can be reduced by allocating enough

memory to hold the working set. Otherwise,

thrashing is a possibility.

3. Miss penalty can be reduced by using disk cache

Page Replacement policy

Determines which page needs to be discarded to

accommodate an incoming page. Common policies

are

♦ Least Recently Used (LRU)

♦ Least Frequently Used (LFU)

♦ Random

Writing into VM

Write-back makes more sense. The page table

must keep track of dirty pages. There is no

overhead to discard a clean page, but to discard

dirty pages, they must be written back to the disk.

Working Set

Consider a page reference string

0, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, … 100,000 references

The size of the working set is 2 pages.

 Page thrashing

 Fault

 Rate

 Enough to Available M
 hold the

working set

Always allocate enough memory to hold the working

set of a program (Working Set Principle)

Disk cache

Modern computers allocate up a large fraction of the

main memory as file cache. Similar principles apply to

disk cache that drastically reduces the miss penalty.

Address Translation Using TLB

 +
 16-512 entries

 TLB

 M

 No match

TLB is a set-associative cache that holds a partial

page table. In case of a TLB hit, the block number is

obtained from the TLB (fast mode). Otherwise (i.e. for

TLB miss), the block number is obtained from the

direct map of the page table in the main memory, and

the TLB is updated.

Page Offset
Page table base
register

Block Offset

Set-associative
or fully

associative cache

Page table is the
direct map in the
main memory

