
Virtual Memory Implementation:

Working Set

Consider a page reference string

0, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, … 100,000 references

The size of the working set is 2 pages.

 Page thrashing

 Fault

 Rate

 Enough to Available M
 hold the

working set

Always allocate enough memory to hold the working

set of a program (Working Set Principle)

Disk cache

Modern computers allocate up a large fraction of the

main memory as file cache. Similar principles apply to

disk cache that drastically reduces the miss penalty.

Address Translation Using TLB

 +

 16-512 entries

 TLB

 M

 No match

TLB is a set-associative cache that holds a partial

page table. In case of a TLB hit, the block number is

obtained from the TLB (fast mode). Otherwise (i.e. for

TLB miss), the block number is obtained from the

direct map of the page table in the main memory, and

the TLB is updated.

!"#$%%%%%%%%&''($)% Page table base
register

*+,-.%%%%% &''($)%

Set-associative
or fully

associative cache

Page table is the
direct map in the
main memory

Multi-level Address Translation

Example 1: The old story of VAX 11/780

30-bit virtual address (1 GB) per user

Page size = 512 bytes = 29

Maximum number of pages = 221 i.e. 2 million

Needs 8 MB to store the page table. Too big!

Solution?

Store the page table in Virtual Memory.

Thus, page table is also paged!

Example: Two-level address

translation

 p.0 of page table

 p.1 of page table

 p.2 of page table

 p.3 of page table

 p.0

 p.1

 p. i

 Physical Memory M

 Virtual address space

 12 9 9

Virtual Address

Directory Offset in Offset
Entry page table in page

Page table
base register

Page table of
page table
(Directory)

Memory management Unit

A memory management unit (MMU), is a hardware

unit responsible for handling accesses to memory

requested by the processor. Its functions include

translation of virtual addresses virtual to physical

addresses, memory protection and cache control.

CPU

Memory MMU

DISK

Disk
Controller

Error Detection and Correction
Transmission or reading errors can corrupt data. If the

extent of the damage is known, then error detection

codes can detect if the data has been corrupted. Using

special type of error-correction codes, we can even

correct errors.

Parity Checking for single error detection

A B C P

The parity-bit generator generates a P so that the

number of 1’s in the transmitted data is odd (or even).

The parity checker checks this in the received data.

How will you design (1) a parity-bit generator, and (2) a

parity checker?

Parity

Checker

Hamming Code

Hamming code not only detects if there is an error, but

also locates where the error is, and subsequently

corrects it. Here is an example:

 7 6 5 4 3 2 1

The 4-bit data (1 0 1 1) to be sent is placed in bit

positions 7, 6, 5, 3 of a 7-bit frame. The remaining bit

positions are reserved for error-correction bits, and

their values are chosen so that there is odd parity for

bit combinations

(4, 5, 6, 7),

(2, 3, 6, 7),

and (1, 3, 5, 7).

1 0 1 1 1 1 0

What is special
about these sets
of bits?

The receiver, upon receiving the 7-bit data, computes the

parities of the above bit combinations, and reports the

result using three bits b2, b1, b0 as follows:

Odd parity for bits 4, 5, 6, 7 ! b2 = 1 else b2 = 0.

Odd parity for bits 2, 3, 6, 7 ! b1 = 1 else b1 = 0.

Odd parity for bits 2, 3, 6, 7 ! b0 = 1 else b0 = 0.

If b2 b1 b0 = 000 then there is no error, otherwise, the

decimal equivalent of b2 b1 b0 reports the position of

the corrupt bit. To correct the error, the receiver flips

that bit.

Question 1. The above implementation works for single

errors only. Can you figure out why it works?

Question 2. Can you generalize it to 32-bit data?

