
Writing into Cache
Case 1. Write hit

 X (store X: X is in C)

Write through Write back

 Write into C & M Write into C only. Update M

 only when discarding the block

 containing x

Q1. Isn’t write-through inefficient?

 Not all cache accesses are for write.

Q2. What about data consistency in write-back cache?

 If M is not shared, then who cares?

Most implementations of Write through use a Write Buffer.

How does it work?

x
x

Case 2. Write miss

 X (Store X, X is NOT in C)

Write allocate Write around

 Allocate a C-block to X. Write directly into

 Load the block containing X bypassing C

 X from M to C.

 Then write into X in C.

 .

?
x

A state-of-the-art memory hierarchy: multilevel cache

 L1 L2

 0.5 ns* 0.75 ns* 50 ns* 1 ms
 32kB+32KB 512KB-2 MB 256MB-1GB 160 GB

Reading Operation

• Hit in L1.

• Miss in L1, hit in L2, copy from L2.

• Miss in L1, miss in L2, copy from M.

Write Hit

• Write through: Write in L1, L2, M.

• Write back

Write in L1 only. Update L2 when

discarding an L1 block. Update M

when discarding a L2 block.

Write Miss

Write-allocate or write-around

 M I

D
L3
 ?

Instruction
cache

Data cache

Inclusion Property

 L1 L2

In a consistent state,
• Every valid L1 block can also be found in L2.

• Every valid L2 block can also be found in M.

Average memory access time =

(Hit time)L1 + (Miss rate)L1 x (Miss penalty)L1

(Miss penalty)L1 = (Hit time)L2 + (Miss rate) L2 x

 (Miss penalty)L2

Performance improves with additional level(s) of

cache if we can afford the cost.

 P

 M
I D

Optimal Size of Cache Blocks

 Tav
Miss Miss Avg.

Penalty Rate Mem
 Access

 Time

 Block size Block size Block size

Large block size supports program locality and

reduces the miss rate.

But the miss penalty grows linearly, since more

bytes are copied from M to C after a miss.

Tav = Hit time + Miss rate x Miss penalty.

The optimal block size is 8-64 bytes. Usually, I-

cache has a higher hit ratio than D-cache. Why?

