Chord

Advanced issues

Analysis

Theorem. Search takes O (log N) time

(Note that in general, when there are m fingers, 2™ may be much larger than N)

Proof. After log N forwarding steps, distance to key is at most

2" /N (N=2'9eN), Number of nodes in the remaining range
is O (log N) with high probability (this is property of consistent
hashing). So by using successors in that range, it will take at most an

additional O (log N) forwarding steps.

Analysis (contd.)

O(log N) search time is true if finger and
successor entries correct. But what if these
entries are wrong (which is possible during

join or leave operations, or process crash?

Search under peer failures

Say m=7

N32 crashed. Lookup for K42 fails
(N16 does not know N45)

N112

N80

N16

F|Ie abcnews.com W|th
key K42 stored here

Search under peer failures

One solution: maintain » multiple successor entries
1n case of a failure, use other successor entries.

Reactive vs.
Say m=7/ 0 Proactive approach

F|Ie abcnews.com W|th
key K42 stored here

Search under peer failures

Choosing r=2log(N) suffices to maintain the
correctness “with high probability.” Say 50%

of nodes fail (i.e prob of failure = %4). For a given
node, Probability (at least one successor alive) =

1

1
1_ = 2log N :1__
(2) N?

Search under peer failures (2)

Lookup fails
(N45 1s dead)

Say m=7

N16

F|Ie abcnews.com W|th
key K42 stored here

Search under peer failures (2)

One solution: replicate file/key at » successors and
predecessors

Say m=7

0
N112 N16

N32

.

K42 replicated

N80

F| Ie abcnews.com W|th

K42 replicated key K42 stored here

Dealing with dynamic issues

Peers fail
New peers join
Peers leave

Need to update successors and fingers, and ensure
keys reside 1n the right places

New peers joining

Some gateway node directs N40 to its successor N45
N32 updates successor to N40

NA4O initializes successor to N45, and obtains fingers frm
N40 periodically talks to neighbors to update finger table

Say m=7 \

0
N112 N16

N96

Gateway node

N32

N40

N8O \/'N45 New node

New peers joining (2)

N40 may need to copy some files/keys from N45
(files with fileid between 32 and 40)

Say m=7

N112

N96

N16

N32

N80

N45

N40

Concurrent join

0

N112 N16
Say m=7 N20
N96 N24
% N28
N32 | k24
N8O N~
N45
K38

Argue that each node will eventually be reachable

Effect of join on lookup

If in a stable network with N nodes, another set
of N nodes joins the network, and the join
protocol correctly sets their successors, then

lookups will take O(log N) steps w.h.p

Effect of join on lookup

N112

N96

N80

N16

Linear Scan

Will locate
K24

N20

(" Consistent hashing)

guarantees that there
be O(log N) new nodes
w.h.p between two
consecutive nodes /

N24

Transfer pending

N28

N32

"N45

Weak and Strong Stabilization

N1

N63

Sl AN
NXS« !
N24

Loopy network

For all u: (successor (predecessor (u))) = u. Still
it is weakly stable but not strongly stable. Why?

Loopy network

> A

N9

N78

!

|

Must be false

for strong stability)

N63

N24

(succ (pred (u))) = u

stable

w What is funny / awkward about this?

There is a v: u <v <successor (u) (Weakly stable)

Strong stabilization

The key idea of recovery from loopiness is: Let each node u
ask its successor to walk around the ring until it reaches a
node v : u <v < successor(u). If

There exists a v: u <v < successor(u)
then loopiness exists, and reset successor(u):=v

Takes O(N?) steps. But loopiness is a rare event.

No protocol for recovery exists from a split ring.

New peers joining (3)

e A new peer affects O(log N) other finger
entries in the system. So, the number of
messages per peer join= O(log(N)*log(N))

e Similar set of operations for dealing with
peers leaving

Bidirectional Chord

Each node u has fingers to

u+l, u+2, u+4, u+8 ... as well as
u-1, u-2, u-4, u-8 ...

How does it help?

Cost of lookup

2 Cost is O(Log N) as predicted by theory

J constant is 1/2

Average Messages per Lookup

0 IIIIIII T llIIlIII T T IIIIIII
10 100 1000

Number of Nodes

Robustness

0 Simulation results: static scenario

1 Failed lookup means original node with key failed (no replica of keys)

0.25 T T T . . I
959 confidance imernval F———

oz ,.4} -
§ o -
- ,«"'
S L
=4 - -~ -
£ 0as %
© s
@ -
L‘b -,
2
2 -

o 1 I o —
3 ¥
z g
e

0.05 | E —
o § 1 1 1 1
(o] 0.05 0. 015 0.2

Failed Node= (Fraction of Total)

1 Result implies good balance of keys among nodes!

Strengths

1 Consistent hashing guarantees balance

1 Proven performance in many different aspects
2 "with high probability” proofs

1 Good tolerance to random node failures

Weakness

1 Network proximity not addressed

2 Protocol security

0 Malicious data insertion

J Malicious Chord table information

1 Keyword search

