
Sequential Circuits
The output depends not only on the current inputs, but

also on the past values of the inputs. This is how a digital

circuit remembers data. Let us see ho a single bit is

stored.

 R Q

 An SR Latch

 S Q

R = Reset, S= Set

S R Q Q Comment

0 0

1 0

0 1

1 1

0/1 1/0

1 0

0 1

0 0

Old state continues

Set state

Reset state

Illegal inputs

A clocked D-latch

 Clock C

 Q

 D Q’ (not Q)

Clock is the enabler. If C=0, Q remains unchanged.

When C=1, then Q acquires the value of D. We will use it

as a building block of sequential circuits.

There are some shortcomings of this simple circuit. An

edge-triggered circuit (or a master-slave circuit) solves

this problem

D Q

D-latch

C Q

Master-Slave D flip-flop

 D Q

 Clock

 Q

Internal details shown above

 Clock pulse Abstract view

The output Q acquires the value of the input D, only when

one complete clock pulse is applied to the clock input.

D Q

D-latch

C Q

D Q

D-latch

C Q

D Q

Clock

Register

A 8-bit register is an array of 8 D-flip-flops.

 Data input

write

Data out

 Abstract view of a register

D Q

D- F/F

C Q

D Q

D-F/F

C Q

D Q

D-F/F

C Q

D Q

D-F/F

C Q

 D

 Q

 D

 Q

 D

 Q

 D

 Q

 D

 Q

 D

 Q

 D

 Q

 D

 Q

Binary counter

Counts 0, 1, 2, 3, …

 A toggle flip-flop (T) is

 a modulo-2 counter

write A 4-bit counter
 (mod-16 counter)

Observe how Q3 Q2 Q1 Q0 change when pulses are

applied to the clock input

D Q

D-F/F

C Q

 D3

 Q3

 D2

 Q2

 D1

 Q1

 D0

 Q0

 4-bit adder

State diagram of a 4-bit counter

Here state = Q3Q2Q1Q0

Recall that the program counter is a 32-bit counter

A shift register

Shift (right)

With each pulse

0
1

2

13

14

15

3

D Q

D- F/F

C Q

D Q

D-F/F

C Q

D Q

D-F/F

C Q

D Q

D-F/F

C Q

Hardware Multiplication

 1 0 0 1

 1 0 1 0

 0 0 0 0

 1 0 0 1 0

 0 0 0 0 0 0

 1 0 0 1 0 0 0

Product 1 0 1 1 0 1 0

The basic operations are ADD and SHIFT. Now let

us see how it is implemented by hardware.

By now, you know all the building blocks.

Multiplicand

Multiplier

The Building Blocks

A shift register

Review how a D flip-flop works

Shift (right)

With each clock pulse on the shift line, data moves one
place to the right.

D Q

D- F/F

C Q

D Q

D-F/F

C Q

D Q

D-F/F

C Q

D Q

D-F/F

C Q

Executing r1:= r2
How to implement a simple register transfer r1:= r2?

 32-bit reg

 32

 Write

 Clock

 32-bit reg

It requires only one clock pulse to complete the

operation.

R2

R1

Executing r1:= r1 + r2

 32-bit reg

 32

 SUM

 32 32

 CLOCK

 32-bit reg Write

It requires only one clock pulse to complete the

operation.

R2

R1

32-bit
Adder

A Hardware Multiplier

 Shift left

 64-bit reg

 64

 Add Right shift

 LSB

 64 64

 64-bit reg Write

If LSB of Multiplier = 1 then add else skip;

Shift left multiplicand & shift right multiplier

How to implement the control unit?

0 Multiplicand

Product

64-bit
ALU Multiplier

Control

Initially 0

Occupies the
right half

Division
The restoring division algorithm follows the simple

idea from the elementary school days. It involves

subtraction and shift. Here is an implementation by

hardware

 Shift right

 64-bit

 64

 Subtract/Add

 64 64 Left
 Shift

 64-bit Write

 Test if negative or not

 Divisor 0’s

Dividend / Remainder

64-bit
ALU Quotient

Control

