
Sequential Circuits 
The output depends not only on the current inputs, but 

also on the past values of the inputs. This is how a digital 

circuit remembers data. Let us see ho a single bit is 

stored. 
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A clocked D-latch 
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Clock is the enabler. If C=0, Q remains unchanged. 

When C=1, then Q acquires the value of D. We will use it 

as a building block of sequential circuits. 

 

 

 

 

There are some shortcomings of this simple circuit. An 

edge-triggered circuit (or a master-slave circuit) solves 

this problem  
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Master-Slave D flip-flop  
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 Clock pulse Abstract view 

The output Q acquires the value of the input D, only when 

one complete clock pulse is applied to the clock input. 
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Register 

A 8-bit register is an array of 8 D-flip-flops. 

 Data input 

 

 

 

 

 

write 

 

Data out 

 

 

 

          

              Abstract view of a register 
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Binary counter 

Counts 0, 1, 2, 3, …  

 

 

      A toggle flip-flop (T) is 

      a modulo-2 counter 

 

 

 

 

write A 4-bit counter 
 (mod-16 counter) 

 

 

 

 

Observe how Q3 Q2 Q1 Q0 change when pulses are 

applied to the clock input 
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  4-bit adder 



State diagram of a 4-bit counter 

Here state = Q3Q2Q1Q0 

 

 

 

 

 

 

 

Recall that the program counter is a 32-bit counter 

 

A shift register 
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Hardware Multiplication  

 

    1 0 0 1 

    1 0 1 0 

    0 0 0 0 

   1 0 0 1 0 

  0 0 0 0 0 0 

 1 0 0 1 0 0 0 

Product 1 0 1 1 0 1 0 
 

 

The basic operations are ADD and SHIFT. Now let 

us see how it is implemented by hardware.  

 

By now, you know all the building blocks. 
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The Building Blocks 
 

A shift register 
 

Review how a D flip-flop works 

 

 

 

 

 

Shift (right) 

 

 

With each clock pulse on the shift line, data moves one 
place to the right. 
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Executing r1:= r2 
How to implement a simple register transfer r1:= r2? 
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It requires only one clock pulse to complete the 

operation.
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Executing r1:= r1 + r2 
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It requires only one clock pulse to complete the 

operation.
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A Hardware Multiplier 
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If LSB of Multiplier = 1 then add else skip; 

Shift left multiplicand & shift right multiplier 

 

How to implement the control unit? 
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Division 
The restoring division algorithm follows the simple 

idea from the elementary school days. It involves 

subtraction and shift. Here is an implementation by 

hardware  
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