
Floating point Representation of Numbers 

 

FP is useful for representing a number in a wide 

range: very small to very large. It is widely 

used in the scientific world. Consider, the following 

FP representation of a number 

 

  Exponent E significand F (also called mantissa) 

 

 

 

 

In decimal it means (+/-) 1. yyyyyyyyyyyy x 10xxxx 

In binary, it means (+/-) 1. yyyyyyyyyyyy x 2xxxx 

(The 1 is implied) 

 

 

+/-  x  x  x  x     y  y  y  y  y  y  y  y  y  y  y  y 

Sign bit 



IEEE 754 single-precision (32 bits) 

 

         Single precision 

     1  8   23 bits 

Largest = 1. 1 1 1 …  x  2 +127  ≈ 2 x 10 +38 

Smallest = 1.000 … x 2 –128 ≈ 1  x 10 -38 

 These can be positive and negative, depending on s. 

 (But there are exceptions too) 

 

IEEE 754 double precision (64 bits) 

 

 

 

1 11 bits    52 bits 

 Largest =  1. 1 1 1… x 2 +1023 

 Smallest = 1.000… X 2 –1024 

s  xxxxxxxx  yyyyyyyyyyyyyyyyyyyyyyy 

 

S exponent   significand 
 



 

Overflow and underflow in FP 

 

An overflow occurs when the number if too large 

to fit in the frame. An underflow occurs when 

the number is too small to fit in the given frame. 

 

How do we represent zero?  
 

IEEE standards committee solved this by 

making zero a special case: if every bit is zero 

(the sign bit being irrelevant), then the 

number is considered zero. 

 

Then how do we represent 1.0?  



Then how do we represent 1.0?  
 
It should have been 1.0 x 20 (same as 0)! The way 

out of this is that the interpretation of the 

exponent bits is not straightforward. The 

exponent of a single-precision float is "shift-

127" encoded (biased representation), 

meaning that the actual exponent is (xxxxxxx 

minus 127). So thankfully, we can get an exponent 

of zero by storing 127.  

 

Exponent = 11111111 (i.e. 255) means 255-127 = 128 

Exponent = 01111111 (i.e. 127) means 127-127 = 0 

Exponent = 00000001 (i.e. 1) means 1-127 = -126 

 

 

 



More on Biased Representation 

The consequence of shift-127 

 

Exponent = 00000000 (reserved for 0) can no 

more be used to represent the smallest number. 

We forego something at the lower end of the 

spectrum of representable exponents, (which could 

be 2-127). That said, it seems wise, to give up the 

smallest exponent instead of giving up the ability 

to represent 1 or zero! 



More special cases 
Zero is not the only "special case" float. There are also 

representations for positive and negative infinity, and for a 

not-a-number (NaN) value, for results that do not make 

sense (for example, non-real numbers, or the result of an 

operation like infinity times zero). How do these work? A 

number is infinite if every bit of the exponent is 1 (yes, we 

lose another one), and is NaN if every bit of the exponent is 1 

plus any mantissa bits are 1. The sign bit still distinguishes 

+/-inf and +/-NaN. Here are a few sample floating point 

representations: 

 

Exponent Mantissa Object 

0 0 Zero 

0 Nonzero Denormalized number* 

1-254 Anything +/- FP number 

255 0 + / -  infinity 

255 Nonzero NaN like 0/0 or 0x inf 

 

* Any non-zero number that is smaller than the smallest normal 

number is a denormalized number. The production of a denormal is 

sometimes called gradual underflow because it allows a calculation to 

lose precision slowly when the result is small.



 

Floating point operations in MIPS 

32 separate single precision FP registers in MIPS  

f0, f1, f2, … f31, 

Can also be used as 16 double precision registers 

 f0, f2, f4, f30 (f0 means f0,f1 f2 means f2,f3) 
 

These reside in a coprocessor C1 in the same package 
 

Operations supported 
 
add.s  $f2, $f4, $f6 # f2 = f4 + f6 (single precision) 

add.d  $f2, $f4, $f6 # f2 = f4 + f6 (double precision)  

 

(Also subtract, multiply, divide format are similar)  

 

lwc1  $f1, 100($s2) # f1 = M [s2 + 100]  (32-bit load) 

mtc1  $t0, $f0  # f0 = t0 (move to coprocessor 1) 

mfc1  $t1, $f1  # t1 = f1 (move from coprocessor 1) 

 



Sample program  

Evaluation of a Polynomial a.x2 + b.x + c 
 
 
 
         # $f0 --- x 
         # $f2 --- sum of terms 
        . . . . .  
         
         # Evaluate the quadratic 
         l.s       $f2,a                # sum = a 
         mul.s    $f2,$f2,$f0         # sum = ax 
         
         l.s       $f4,b              # get b 
         add.s    $f2,$f2,$f4        # sum = ax + b 
         mul.s    $f2,$f2,$f0          # sum = (ax+b)x = ax^2 + bx 
         
         l.s       $f4,c                # get c 
         add.s   $f2,$f2,$f4         # sum = ax^2 + bx + c 
        . . . . . . 
 
         .data 
a:      .float  1.0 
b:     .float  1.0 
c:      .float  1.0 
 
 
 

 

 

Pseudo-
instruction 



Floating Point Addition 

Example using decimal 

A = 9.999 x 10 1, B = 1.610 x 10 –1, A+B =? 

 

Step 1. Align the smaller exponent with the larger 

one. 

B = 0.0161 x 101 = 0.016 x 101 (round off) 

Step 2. Add significands 

9.999 + 0.016 = 10.015, so A+B = 10.015 x 101   

Step 3. Normalize 

A+B = 1.0015 x 102 

Step 4. Round off 

A+B = 1.002 x 102 

 

 

Now, try to add 0.5 and –0.4375 in binary. 



Floating Point Multiplication 

 

Example using decimal 

A = 1.110 x 1010, B = 9.200 x 10-5 A x B =? 

 

Step 1. Exponent of A x B = 10 + (-5) = 5 

Step 2. Multiply significands 

1.110 x 9.200 = 10.212000 

Step 3. Normalize the product 

10.212 x 105 = 1.0212 x 106 

Step 4. Round off 

A x B = 1.021 x 106 

Step 5. Decide the sign of A x B (+ x + = +) 

 

So, A x B = + 1.021 x 106 



 


