
Floating point Representation of Numbers

FP is useful for representing a number in a wide

range: very small to very large. It is widely

used in the scientific world. Consider, the following

FP representation of a number

 Exponent E significand F (also called mantissa)

In decimal it means (+/-) 1. yyyyyyyyyyyy x 10xxxx

In binary, it means (+/-) 1. yyyyyyyyyyyy x 2xxxx

(The 1 is implied)

+/- x x x x y y y y y y y y y y y y

Sign bit

IEEE 754 single-precision (32 bits)

 Single precision

 1 8 23 bits

Largest = 1. 1 1 1 … x 2 +127 ≈ 2 x 10 +38

Smallest = 1.000 … x 2 –128 ≈ 1 x 10 -38

 These can be positive and negative, depending on s.

 (But there are exceptions too)

IEEE 754 double precision (64 bits)

1 11 bits 52 bits

 Largest = 1. 1 1 1… x 2 +1023

 Smallest = 1.000… X 2 –1024

s xxxxxxxx yyyyyyyyyyyyyyyyyyyyyyy

S exponent significand

Overflow and underflow in FP

An overflow occurs when the number if too large

to fit in the frame. An underflow occurs when

the number is too small to fit in the given frame.

How do we represent zero?

IEEE standards committee solved this by

making zero a special case: if every bit is zero

(the sign bit being irrelevant), then the

number is considered zero.

Then how do we represent 1.0?

Then how do we represent 1.0?

It should have been 1.0 x 20 (same as 0)! The way

out of this is that the interpretation of the

exponent bits is not straightforward. The

exponent of a single-precision float is "shift-

127" encoded (biased representation),

meaning that the actual exponent is (xxxxxxx

minus 127). So thankfully, we can get an exponent

of zero by storing 127.

Exponent = 11111111 (i.e. 255) means 255-127 = 128

Exponent = 01111111 (i.e. 127) means 127-127 = 0

Exponent = 00000001 (i.e. 1) means 1-127 = -126

More on Biased Representation

The consequence of shift-127

Exponent = 00000000 (reserved for 0) can no

more be used to represent the smallest number.

We forego something at the lower end of the

spectrum of representable exponents, (which could

be 2-127). That said, it seems wise, to give up the

smallest exponent instead of giving up the ability

to represent 1 or zero!

More special cases
Zero is not the only "special case" float. There are also

representations for positive and negative infinity, and for a

not-a-number (NaN) value, for results that do not make

sense (for example, non-real numbers, or the result of an

operation like infinity times zero). How do these work? A

number is infinite if every bit of the exponent is 1 (yes, we

lose another one), and is NaN if every bit of the exponent is 1

plus any mantissa bits are 1. The sign bit still distinguishes

+/-inf and +/-NaN. Here are a few sample floating point

representations:

Exponent Mantissa Object

0 0 Zero

0 Nonzero Denormalized number*

1-254 Anything +/- FP number

255 0 + / - infinity

255 Nonzero NaN like 0/0 or 0x inf

* Any non-zero number that is smaller than the smallest normal

number is a denormalized number. The production of a denormal is

sometimes called gradual underflow because it allows a calculation to

lose precision slowly when the result is small.

Floating point operations in MIPS

32 separate single precision FP registers in MIPS

f0, f1, f2, … f31,

Can also be used as 16 double precision registers

 f0, f2, f4, f30 (f0 means f0,f1 f2 means f2,f3)

These reside in a coprocessor C1 in the same package

Operations supported

add.s $f2, $f4, $f6 # f2 = f4 + f6 (single precision)

add.d $f2, $f4, $f6 # f2 = f4 + f6 (double precision)

(Also subtract, multiply, divide format are similar)

lwc1 $f1, 100($s2) # f1 = M [s2 + 100] (32-bit load)

mtc1 $t0, $f0 # f0 = t0 (move to coprocessor 1)

mfc1 $t1, $f1 # t1 = f1 (move from coprocessor 1)

Sample program

Evaluation of a Polynomial a.x2 + b.x + c

 # $f0 --- x
 # $f2 --- sum of terms

 # Evaluate the quadratic
 l.s $f2,a # sum = a
 mul.s $f2,$f2,$f0 # sum = ax

 l.s $f4,b # get b
 add.s $f2,$f2,$f4 # sum = ax + b
 mul.s $f2,$f2,$f0 # sum = (ax+b)x = ax^2 + bx

 l.s $f4,c # get c
 add.s $f2,$f2,$f4 # sum = ax^2 + bx + c

 .data
a: .float 1.0
b: .float 1.0
c: .float 1.0

Pseudo-
instruction

Floating Point Addition

Example using decimal

A = 9.999 x 10 1, B = 1.610 x 10 –1, A+B =?

Step 1. Align the smaller exponent with the larger

one.

B = 0.0161 x 101 = 0.016 x 101 (round off)

Step 2. Add significands

9.999 + 0.016 = 10.015, so A+B = 10.015 x 101

Step 3. Normalize

A+B = 1.0015 x 102

Step 4. Round off

A+B = 1.002 x 102

Now, try to add 0.5 and –0.4375 in binary.

Floating Point Multiplication

Example using decimal

A = 1.110 x 1010, B = 9.200 x 10-5 A x B =?

Step 1. Exponent of A x B = 10 + (-5) = 5

Step 2. Multiply significands

1.110 x 9.200 = 10.212000

Step 3. Normalize the product

10.212 x 105 = 1.0212 x 106

Step 4. Round off

A x B = 1.021 x 106

Step 5. Decide the sign of A x B (+ x + = +)

So, A x B = + 1.021 x 106

