
A 1-bit ALU Operation

Operation = 00 implies AND A Result

Operation = 01 implies OR B

Operation = 10 implies ADD

 Operation

Carry in

A

B 00

 01 Result

 10

 Carry out

♦ Understand how this circuit works.

♦ Let us add one more input to the mux to implement

slt when the Operation = 11

Adder

?

Acts like a traffic light

Converting an adder into a subtractor

A - B (here - means arithmetic subtraction)

= A + 2’s complement of B

= A + 1’s complement of B + 1

 operation

Carry in

A

B 00

 01 Result

 0 10

 1

 11

B invert Carry out

1-bit adder/subtractor

For subtraction, B invert = 1 and Carry in = 1

Adder

1-bit ALU for MIPS

Assume that it has the instructions add, sub, and, or, slt.

 Operation

Carry in

A

B 00

 01 Result

 0 10

 1

Less 11

B invert Set

 Carry out

Less = 1 if the 32-bit number A is less than the 32-bit

number B. (Its use will be clear from the next page)

We now implement slt (If A < B then Set = 1 else Set = 0)

Adder

A 32-bit ALU for MIPS

 B invert C in operation

 A0

 B0

 Less

 C in

 A1

 B1

 0

 ..

 ..

 A31

 B31 Result 31

 0 Set overflow

ALU

Cout

ALU

Cout

ALU

Cout

Combinational vs. Sequential Circuits

Combinational circuits

The output depends only on the current values of

the inputs and not on the past values. Examples are

adders, subtractors, and all the circuits that we have

studied so far

Sequential circuits

The output depends not only on the current values

of the inputs, but also on their past values. These hold

the secret of how to memorize information.

We will study sequential circuits later.

