
Using AND for bit manipulation

To check if a register $s0 contains an odd number,

AND it with a mask that contains all 0’s except a 1

in the LSB position, and check if the result is zero

(we will discuss decision making later)

andi $t2, $s0, 1

This uses I-type format (why?):

 6 5 5 16

Now we have to test if $t2 = 1 or 0

 8 16 10 1

andi
s0 t2

Making decisions

if (i == j) then f = g + h; else f = g – h

Use bne = branch-nor-equal, beq = branch-equal, and j = jump

Assume that f, g, h, are mapped into $s0, $s1, $s2

i, j are mapped into $s3, $s4

bne $s3, $s4, Else # goto Else when i=j

add $s0, $s1, $s2 # f = g + h

j Exit # goto Exit

Else: sub $s0, $s1, $s2 # f = g – h

Exit:

The program counter and control flow

Every machine has a program counter (called PC) that

points to the next instruction to be executed.

 1028

 1032

 1036 PC

 CPU

MEMORY

Ordinarily, PC is incremented by 4 after each instruction

is executed. A branch instruction alters the flow of

control by modifying the PC.

Instruction 1

Instruction 2

Instruction 3

Instruction 4

data

data

1028

Compiling a while loop

while (A[i] == k) i = i + j;

Initially $s3, $s4, $s5 contains i, j, k respectively.

Let $s6 store the base of the array A. Each element of A

is a 32-bit word.

Loop: add $t1, $s3, $s3 # $t1 = 2*i

 add $t1, $t1, $t1 # $t1 = 4*i

add $t1, $t1, $s6 # $t1 contains address of A[i]

lw $t0, 0($t1) # $t0 contains $A[i]

add $s3, $s3, $s4 # i = i + j

bne $t0, $s5, Exit # goto Exit if A[i] ! k

j Loop # goto Loop

Exit: <next instruction>

 Note the use of pointers.

Running MIPS programs on the SPIM simulator

 # Example of input output
 .data
str1: .asciiz "Enter the number:"
 .align 2 #move to a word boundary
res: .space 4 # reserve space to store result
 .text
 .globl main

main: li $v0, 4 # code to print string
 la $a0, str1
 syscall
 li $v0, 5 # code to read integer
 syscall
 move $t0, $v0 # move the value to $t0
 add $t1, $t0, $t0 # multiply by 2
 sw $t1, res($0) # store result in memory
 li $v0, 1 # code to print integer
 move $a0, $t1 # move the value to be printed into $a0
 syscall # print to the screen
 li $v0, 10 # code for program end
 syscall

SPIM simulator uses System Call for input / output operation

li $v0, 5 # System call code for Read Integer
syscall # Read the integer into $v0

Exercise

Add the elements of an array A[0..63]. Assume that the

first element of the array is stored from address 200.

Store the sum in address 800.

Read Appendix A of the textbook for

a list of these system calls used by

the SPIM simulator.

