
22C:123

1

Semantics of Object-Oriented Languages1

The rise in popularity of the object-oriented paradigm is relatively recent. Formal
semantics for this paradigm is therefore not nearly are well developed as it is for the
more traditional paradigms we have examined so far. The variety of semantic
approaches we have developed for traditional languages is absent in this case. In this
presentation, the denotational approach is pursued for object-oriented languages
through a series of successively expanding steps.

ObjectTalk
The initial step provides the analysis for a very simple language that Kamin and Reddy
call ObjectTalk. This language does not include “classes”, although methods can create
objects each time they are called, so some similar effects can be achieved. The only
constructs in this language are defining objects, and sending them messages.

The semantic domains are as follows:
a Œ loc
h Œ env = variable Æ loc
s Œ state = loc Æ val
e Œ expression = env Æ state Æ (val ¥ state)
m Œ method = state Æ val* Æ(val ¥ state)
r Œ menv = message Æ method
o Œ objectval = menv
x Œ classval = state Æ (menv ¥ state)
y Œ superclassval = state Æ (env ¥ (menv Æ menv) ¥ state)
v Œ val = basicval + loc + objectval + classval + superclassval

It is assumed that 'basicval' includes usual pre-defined values (e.g., integers) for which
definitions are omitted. The domain 'loc' can be thought of as pointers or machine
addresses and will not be elaborated. The domains 'expression' and 'message' are
syntactic, and any conventional message identifier syntax is acceptable. The domains
will be discussed further as we proceed.

The syntax for the definition of objects is the object expression, written as

e ::= obj(x1, … , xn) {m1(y
_

1)=e1, … , mk(y
_

k)=ek}
where x1, … , xn are local (i.e., instance) variables of the object, m1, … , mk identify the

messages, and provide the method definitions. The y
_

1, … , y
_

k are parameter lists (the
overbar is used to denote comma separated lists) for the methods, and a method body
can refer to both its parameters and the instance variables.

1 This presentation is based on “Two semantic models of object-oriented languages” by S. N.
Kamin & U. S. Reddy that appears in Theoretical Aspects of Object-Oriented Programming, C. A.
Gunter & J. C. Mitchell, Eds.

22C:123

2

Each occurrence of an object expression signals the creation of a corresponding object.
With these conventions objects are denoted only by object expressions and are
therefore anonymous.

The second (and final) syntax category of ObjectTalk is the message expression,
written as

e ::= e0.m(e
_

a)

where e0 is the receiver object, m is the message, and e
_

a is a list of argument
expressions.

There is also a reserved word, self, that may appear in method bodies and is
understood to denote the object receiving the message of the method currently being
executed. While it is technically unnecessary in the present context where a single
object is endowed with methods, self is introduced here to smooth the transition to the
next semantic step where classes endow a collection of objects with methods defined
only once.

Example.
The following illustrates the definition of a (2-dimensional) point object.
p = obj(x,y) {put(a,b) = begin x:= a; y:= b end, (6)

dist(0 = sqrt(sqr(valof x) + sqr(valof y)),
closer(q) = self.dist() < q.dist()}

The object p declares two instance variables, x and y to represent the coordinates of the
point. It also defines three messages. The 'put' message has two parameters and sets
the coordinates of a point (creation leaves them undefined); the 'dist' message has no
parameters and gives the distance of the point from the origin; and 'closer' has one
“point-like” parameter q, and tests if the receiving point is closer to the origin than q.

For the sake of brevity, we are taking the liberty of attaching an identifier to the indicated
point object. This naming is “outside” the convention of the semantics being developed.
In particular, the identifier 'p' is not permitted within the body of the point definition.

Several traditional semantic issues are being disregarded in order to focus on the issue:
“what should objects denote?”. The point of view that is taken here is an external
behavioral view — an object responds to sequences of messages. Therefore, the
meaning of an object can simply be an environment binding messages to their methods.
Hence,

objectval = menv = message Æ method, where
method = state Æ val* Æ (val ¥ state)

This is a significant choice in the semantic definition. The state of an object is not
providing a direct contribution to its meaning — the object meaning only maps messages
to methods. This recognizes the encapsulation intention of the object -oriented
paradigm, where the internal storage of an object is only directly accessible within the
object, and the only effect in client code is experienced through message responses.
However, this complicates the semantic description of objects since the correspondence

22C:123

3

of message to method is not constant — a message at one point may exhibit different
behavior than the same message at another point where the internal state has changed.
The method domain is similar to what has previously been used for procedures in
denotational semantics. In particular, the environment at the point of message sending
(i.e., method invocation) does not effect the meaning. These characteristics must be
reflected in the message to method correspondence.

So the first attempt to express the meaning of an object expression in terms of its action
for a message, is in the context of a state that is the first argument to the resulting
method. The approach here is that the meaning of an object expression extends the
current environment h to allocate space for the instance variables, bind the variables to
the newly allocated space, producing environment h1, then produce the final
environment h2 where the message identifiers are bound to the method bodies
preformed in environment h1. Symbolically,

meaning [obj(x1, … , xn) {m1(y
_

1), … , mk(y
_

k)}] h s =

extendEnv(h1, m
_

, meth

)

where h1= entendEnv(h, x
_
, loc

) , allocate s
_

 = <s
_

', loc

>, and
methi = perform [bodyi] h1.

This semantics is not fully satisfactory since we would like to be able to refer to an
object’s messages in the methods defining those messages. This is not possible in the
above definition because the methods are executed in the environment h1 while the
message environment binding the message names to methods is the result h2 =

extendEnv(h1, m
_

, meth

).

In order to accomplish the recursive referral, the reserved word self is bound to the
message environment being constructed for the object. That is, self designates the
message to method mapping being constructed, and its definition is therefore inherently
recursive. This can be expressed either by explicit recursion, or by applying a “fixed
point operator”. Kamin and Reddy use the fixed point operator (recursively,
extendEnv(h2, self, h2) = h2).

meaning [obj(x1, … , xn) {m1(y
_

1), … , mk(y
_

k)}] h s =
fixh (extendEnv(h2, self, h)) (7)

where h1= entendEnv(h, x
_
, loc

) , allocate s
_

 = <s
_

', loc

>, and
methi = perform [bodyi] entendEnv(h1, self, fixh), and

h2 = extendEnv(h1, m
_

, meth

).

22C:123

4

Finally, the meaning of a message send reflects evaluating the receiver object to obtain
an appropriate state, and message mapping function, evaluating the argument
expressions in the resulting state, and then invoking the method designated by the
mapped message with those arguments.

meaning [e0.m(e
_

a)] h s = r m v
_
 s2 (8)

where meaning [e0] h s = <r,s1>, and meaning [e
_

a] h s1 = <v
_
,s2>.

ClassTalk
In this language, Kamin and Reddy introduce classes, but not inheritance. The new
syntax providing class expressions is

e ::= class(x1, … , xn) {m1(y
_

1)=e1, … , mk(y
_

k)=ek}
where x1, … , xn are local (i.e., instance) variables of the object, m1, … , mk identify

the messages, and provide the method definitions. The y
_

1, … , y
_

k are parameter lists
for the methods, and a method body can refer to both its parameters and the instance
variables.

They also add the means to create instance objects of classes, namely
e ::= new ec
where ec is a class expression.

The semantics Kamin and Reddy attach tor this new construct is is still that of a
message environment (mapping messages to methods), namely

meaning [new class(x1, … , xn) {m1(y
_

1)=e1, … , mk(y
_

k)=ek}] =

meaning [obj(x1, … , xn) {m1(y
_

1)=e1, … , mk(y
_

k)=ek}] (11)

In the light of (11), classes do not add any expressive capacity, but they are still valuable
from a practical perspective. But this still does not provide for importation of another
class, a capability we would certainly desire even in the absence of inheritance.

For the treatment of inheritance, see the paper cited that goes on to describe a third
language, InheritTalk, that incorporates this capability.

