Notes about Natural Numbers

Theorem: Let $\mathrm{m}, \mathrm{n} \square \mathbf{N a t}$ and $\mathrm{m}>0$. Then there exist unique natural numbers q (quotient) and r (remainder), $0 \leq \mathrm{r}<\mathrm{m}$, so that $\mathrm{n}=\mathrm{qm}+\mathrm{r}$.

We may write $n \bmod m=r$, or $\operatorname{rem}(n, m)=r$, and quotient $(n, m)=q$. The number d is a divisor of n if n $\bmod \mathrm{d}=0$, and n is a multiple of d (i.e., $\mathrm{n}=\mathrm{qd}$). If d is a divisor of both m and n, d is called a common divisor of m and n. If d is the largest common divisor of m and n, it is called the greatest common divisor, written as $\operatorname{gcd}(m, n)$.

Theorem: Let $\mathrm{b}>1$ be a natural number (the base), Then for each $\mathrm{n} \square \mathbf{N a t}$ with $\mathrm{n}>0$, there are natural numbers $k \geq 0$ and $a_{0}, a_{1}, \ldots, a_{k}$ with $0 \leq a_{i}<b$ for $0 \leq i \leq k-1$ and $0<a_{k}<b$ so that n is uniquely represented as $n=a_{0}+a_{1} b+a_{2} b^{2}+\ldots+a_{k} b^{k}=\square_{i=0}^{k} a_{i} b^{i}$.

In positional notation we write only the coefficients $a_{0}, a_{1}, \ldots, a_{k}$, but in the reverse order (least significant coefficient to the right).

The preceding two theorems give rise to a straightforward algorithm for converting between bases.

Natural numbers (and Integers) are grouped into the following four categories based on their multiplication properties:

- zero - 0 alone (0 is a multiple of every integer)
- unit -u is a unit if $\mathrm{xu}=1$ for some integer $\mathrm{x} ; 1$ is the only unit for Nat, and $\{1,-1\}$ are the units for Int
- prime - if p is not a unit and $\mathrm{p}=\mathrm{xy}$ implies that either x or y is a unit, p is a prime
- composite - everything else (i.e., a product of two numbers that are neither a unit nor 0)

Prime Factorization Theorem: Any natural number $\mathrm{n}>1$ can be written uniquely as

$$
\mathrm{n}=\mathrm{p}_{1}^{\mathrm{m}_{1}} \quad \mathrm{p}_{2}^{\mathrm{m}_{2}} \quad \ldots \mathrm{p}_{\mathrm{k}}^{\mathrm{m}_{\mathrm{k}}}
$$

where $\mathrm{k}>0, \mathrm{p}_{\mathrm{i}}$ is a prime and $\mathrm{m}_{\mathrm{i}}>0(1 \leq \mathrm{i} \leq \mathrm{k})$, and $1<\mathrm{p}_{1}<\mathrm{p}_{2}<\ldots<\mathrm{p}_{\mathrm{k}}$.
For real number x and natural number n , if $\mathrm{n} \leq \mathrm{x}<\mathrm{n}+1$, then $\operatorname{floor}(\mathrm{x})=\mathrm{n}-\mathbf{f l o o r}(\mathbf{x})$ is the largest integer not exceeding x ; if $\mathrm{n}<\mathrm{x} \leq \mathrm{n}+1$, then ceiling $(\mathrm{x})=\mathrm{n}+1-\operatorname{ceiling}(\mathrm{x})$ is the smallest integer not less than x .

The factorial of a natural number n, written $n!$, is defined to be $n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot(n-1) \cdot n$ if $n>0$, and $0!=$ 1. The factorial numbers are used to define the binomial numbers - for $n, m \square N a t$ and $n \geq m$, the binomial number, written $B_{m}^{n} \Pi_{\text {in }}$ is defined as $\Theta_{m}^{n} \cap=\frac{n!}{m!(n-m)!}$.

The number of permutations (or rearrangements) of n elements is $n!$, and the number of m element subsets of an n element set is $\mathrm{Bn}_{\mathrm{n}} \mathrm{B}$

Binomial Expansion Theorem: For numbers x and y and $n \square \mathbf{N a t}$,

