
22C:123

1

An “Infamous” Example

We examine an initial algebra specification
by Goguen et al (chap. 5 of Yeh book) to
describe the (signed) integer ADT (with
sum and product operations) given Boolean
and Nat ADTs. The intuitive idea is to pair a
natural number with a Boolean value that
represents its sign, and then express
signed arithmetic (assuming we already
know unsigned arithmetic). However, it will
be seen that the initial algebra of this ADT
is not the usual algebra of the integers.

The specification
Signat signature
Pre-defined types: Boolean (with '='), and
Nat ({0, 1, 2, …}) with operations as usual,
including +, –. , *, ≤ (note that –. is “proper
subtraction”, n–. m yields 0 when n≤m).

Operation signatures:
PAIR: Nat, Bool Æ Signat
ABS: Signat Æ Nat
SGN: Signat Æ Bool
SUM: Signat, Signat Æ Signat
PROD: Signat, Signat Æ Signat

22C:123

2

Semantic equations (for all sŒSignat, nŒNat,
bŒBool)
1. PAIR(ABS(s), SGN(s)) = s
2. ABS(PAIR(n,b)) = n
3. SGN(PAIR(n,b)) = b
4. SUM(s1, s2) =

if SGN(s1)=SGN(s2)
then PAIR(ABS(s1)+ABS(s2), SGN(s1))
else if ABS(s1)≤ABS(s2)

then PAIR(ABS(s2)–
.ABS(s1), SGN(s2))

else PAIR(ABS(s1)–
.ABS(s2), SGN(s1))

5. PROD(s1,s2) =
PAIR(ABS(s1)*ABS(s2), SGN(s1)=SGN(s2))

The flaw
The fault to be found with this specification of the

signed integers is that there are two “zeros” —

PAIR(0,True) or +0, and PAIR(0,False) or –0. There

are no equations that enable us to deduce these two

different pairs are equivalent, and so in the initial

algebra view they are different.

22C:123

3

This might appear to be a minor oversight, but in fact

having two distinct representations of zero causes

numerous familiar identities to be invalidated. For

instance, for all x, x+0 = x in the integers. But neither

of the corresponding values in this specification has this

property — note that SUM(+0,–0) = –0, and

SUM(–0,+0) = +0 (use the equations in the specification

on the term forms of these values to confirm this). Also

for all x, x*0 = 0 in the integers, but in the specification

PROD(–5,+0) = –0, and PROD(–0,–0) = +0. If it is

really the system of signed natural numbers we seek to

specify, the specification given does not qualify.

22C:123

4

A defective repair
In a widely circulated IBM technical report that

preceded the Yeh publication, the authors “corrected”

the problem in the SigNat ADT described above by

proposing the single additional axiom

6. PAIR(0,True) = PAIR(0,False)

to unify these two different equivalence classes (i.e., +0

= –0). While at first glance this seems like a simple and

obvious solution, it is a huge blunder. If we add this

axiom to those we already have for SigNat, then

True 3
≡ SGN(PAIR(0,True)) 6

≡ SGN(PAIR(0,False)) 3
≡

False!

Hence an inconsistency in the pre-defined type Boolean

has been introduced into the specification, and the

original flawed “approximate specification” has been

destroyed completely rather than repaired.

22C:123

5

An actual repair
A suitable correction to the original flaw is to not add

an equation, but to replace equation 3 by

3'. SGN(n,b) = if n=0 then True else b

Then the two representations of zero are equivalent:

PAIR(0,False) 1
≡

PAIR(ABS(PAIR(0,False), SGN(PAIR(0,False)) 2
≡

PAIR(0, SGN(PAIR(0,False))) 3'
≡

PAIR(0, True).

So now the two zero terms fall into the same

equivalence class, and so we have a true, unique zero.

But no inconsistency is introduced — it’s impossible to

deduce that e.g., True ≡ False (why?).

