
22C:111
Example Axiomatic Program Proof

page 1 of 2

The Fibonacci numbers are a sequence of integers defined recursively by
fib(0) = 0, fib(1) = 1, and
fib(N) = fib(N-1)+fib(N-2), for N>1.

The naturally corresponding recursive program (in  any language) for this
definition is clearly correct but so highly inefficient that it is of no practical
use, even for small (e.g., two digit) arguments. We prove that the following
iterative program fragment in Louden's Sample language is correct (its
performance is clearly directly proportional to the size of the argument N).

{ N≥0 }
 NEW:= 1;  OLD:= 0;  I:= 0;

     { PP}

while N-I d o
I:= I+1;  NEW:= NEW+OLD;
OLD:= NEW-OLD  od

{ OLD = fib(N) }

Proof (read ˙æ as “it is provable that”)
Step 0: discover the loop invariant PP            

Informally the idea of the loop is that as I is incremented, the variables NEW
and OLD are revised to maintain the value of fib(I) and fib(I+!). We also include
a technical condition relating I and N that’s needed in the last step.
Take PP ≡ (0£I£N Ÿ NEW=fib(I+1) Ÿ OLD=fib(I))

Step 1: Show ˙æ { N≥0 }  NEW:=1;  OLD:=0;  I:=0  { P P }            

Exercise — takes several steps using ASN and SEQ.

Step 2: Show ˙æ { PP } while … { OLD=fib(N) } (i.e., prove the post-condition)            

This step is established through several intermediate steps.
Step 2A: Find QQ1 and QQ2 to show (i.e., PP is a loop invariant)               

˙æ { PP Ÿ N-I>0 }

 I:=I+1;
{ QQ1 }  NEW:= NEW+OLD;
{ QQ2 }  OLD:= NEW-OLD

{ P P }



22C:111
Example Axiomatic Program Proof

page 2 of 2

Step 2Ai: formulate QQ1                

After I is incremented, but NEW and OLD have not yet been changed, the
Fibonacci indicies of NEW and OLD are one step behind.
Take QQ1 ≡ 0£I£N Ÿ NEW=fib(I) Ÿ OLD=fib(I-1)
Step 2Aii: Show ˙æ { PP Ÿ I< N } I:= I+1 { QQ1}                  
It can be seen that (PP  Ÿ I<N) Æ QQ1[I fi I+1] so by ASN and STR, step 2Aii

holds.
Step 2Aiii: formulate QQ2                   

At this point, the index I and the variable NEW have been updated, but
the variable OLD is still a step behind.
Take QQ2 ≡ 0£I£N Ÿ NEW=fib(I+1) Ÿ OLD=fib(I-1)
Step 2Aiv: show ˙æ { QQ1} NEW:= NEW+OLD { QQ2}                   

This is a direct application ofASN.
Step 2Av: show ˙æ { QQ2} OLD:= NEW-OLD { PP}                 
One can see that QQ2 Æ PP[OLD fi NEW-OLD] so that by ASN and STR, this

step is proven
Step 2Avi: by steps 2Aii, 2Aiv, and 2Av and SEQ (applied twice), the proof                   

of step 2A is complete.

Step 2B: by step 2A and WHL we have               
˙æ { PP} while … { PP  Ÿ N-I≤0 }.  Now, PP  Ÿ N-I≤0 implies (this is where we

need 0≤I≤N included in the loop invariant)
I=N Ÿ OLD=fib(I)/

Therefore, ˙æ  PP Ÿ I≥N Æ OLD=fib(N) (i.e.,  the value of I is immaterial at the

end).

Step 3: By steps 1 and 2 and WKN , the program is proven.            

This presentation has illustrated how to discover the program proof and
determine the needed steps. A valid logic proof would require reordering all
the individual steps so that each is either an axiom or is derived from previous
steps by a rule of inference.


