Exam I - Sample Solutions

Problem 1.

Proof by induction:
Basis case: $n=0$
$\square_{k=0}^{n}(2 k+1)=\square_{k=0}^{0}(2 k+1)=1=1^{2}=(n+1)^{2}$ so true for $n=0$.
Induction step: assume true for n , prove for $\mathrm{n}+1$
Inductive hypothesis: assume $\square_{k=0}^{n}(2 k+1)=(n+1)^{2}$.
Extend induction (prove for $n+1$):

$$
\begin{aligned}
& \square_{k=0}^{n+1}(2 k+1)=\square_{k=0}^{n}(2 k+1)+2(n+1)+1 \text { by rearrangement } \\
& =(n+1)^{2}+2 n+3 \text { by inductive hypothesis } \\
& =n^{2}+2 n+1+2 n+3=n^{2}+4 n+4=(n+2)^{2}=((n+1)+1)^{2} \text { by algebra. }
\end{aligned}
$$

Therefore the induction is extended, and by induction the result is proven for all n.

Problem 2.

For parts (a) and (c) of this solution, assume the universe is $E=\{1,2,3\}$.
(a) $(A] B) \square(\sim A \square B)=A \square B$ is false -
for $A=\{1\}$ and $B=\{2\}, A \square B=\{1,2\}$ while $(A \square B) \square(\sim A \square B)=\varnothing \square\{2\}=\{2\}$.
(b) $(A-B)-C=(A-C)-B$ is true -

If $x \square(A-B)-C$, then $x \square(A-B)$ and $x \square C$ and so $x \square A$ and $x \square B$. Hence $x \square(A-C)-B$, and $(A-B)-C \square(A-C)-B$. Conversely, if $x \square(A-C)-B$, then $x \square(A-C)$ and $x \square B$ and so $x \square A$ and $x \square C$. Hence $x \square(A-B)-C$, and $(A-C)-B \square(A-B)-C$ and the proof is complete.
(c) $(A-B) \square(B-A)=\sim(A \square B)$ is false -
for $A=\{1\}$ and $B=\{2\}, \sim(A \square B)=\{1,2,3\}$ while $(A-B) \square(B-A)=\{1,2\}$.

Problem 3.

The relation R is an equivalence relation. Since $m \bmod 2=n \bmod 2$, either both m and n must be even or both must be odd. This condition alone would yield the classes

$$
\begin{aligned}
& {[0]=\{0,2,4,6, \ldots\} \text { and }} \\
& {[1]=\{1,3,5,7, \ldots\} .}
\end{aligned}
$$

But not all elements in one of these classes are equivalent under R. For instance, $(0,2) \square R$ since $(0 \bmod 3) \neq(2 \bmod 3)$, and $(0 \bmod 3) \neq(4 \bmod 3)$, so $(0,4) \square R$. On the other hand, $(0 \bmod 3)=(6 \bmod 3)$, so $(0,6) \square R$. The added requirement that $(\operatorname{m~mod} 3)=$ (n mod 3) splits the even/odd classes above. Since there are three possible remainders from division by 3 , each of these two classes splits into three and the six equivalence classes of R are:

$$
\begin{array}{ll}
{[0]=\{0,6,12, \ldots\}=\{k \cdot 6 \mid k \square N\}} & \\
{[2]=\{2,8,14, \ldots\}=\{2+k \cdot 6 \mid \mathrm{k} \square \mathrm{~N}\}} & \\
{[4]=\{4,10,16, \ldots\}=\{4+\mathrm{k} \cdot 6 \mid \mathrm{k} \square \mathrm{~N}\}} & \\
\text { remainders } 0,0 \text { (from } 2 \text { and } 3, \text { respectively) } \\
{[4 \text { (from } 2 \text { and } 3, \text { respectively) }} \\
0,1 \text { (from } 2 \text { and } 3, \text { respectively) }
\end{array}
$$

$$
\begin{array}{ll}
{[1]=\{1,7,13, \ldots\}=\{1+k \cdot 6 \mid \mathrm{k} \square \mathrm{~N}\}} & \\
{[3]=\{3,9,15, \ldots\}=\{3+\mathrm{k} \cdot 6 \mid \mathrm{k} \square \mathrm{~N}\}} & \\
\text { remainders } 1,1 \text { (from } 2 \text { and 3, respectively) } \\
{[5]=\{5,11,17, \ldots\}=\{5+\mathrm{k} \cdot 6 \mid \mathrm{k} \square \mathrm{~N}\}} & \\
\text { remainders } 1,0 \text { (from } 2 \text { (from } 2 \text { and 3, respectively) } \\
\text { respectively) }
\end{array}
$$

Problem 4.

(a) The function is defined as

$$
f(n)=\begin{aligned}
& \{n / 2, \text { for } n \text { even } \\
& \{-((n+1) / 2), \text { for } n \text { odd })
\end{aligned}
$$

For an odd integer $n, n+1$ is even, and $-((n+1) / 2)$ is the desired negative integer.
(b) f is 1-1 since if $f\left(n_{1}\right)=f\left(n_{2}\right)$, then n_{1} and n_{2} are either both even or both odd since otherwise $f\left(n_{1}\right)$ is negative and $f\left(n_{2}\right)$ is not, or vice-versa. Then in case both are even $n_{1} / 2=n_{2} / 2$ implies $n_{1}=n_{2}$. And in case both are odd, likewise $-\left(\left(n_{1}+1\right) / 2\right)=$ $-\left(\left(n_{2}+1\right) / 2\right)$ implies $n_{1}=n_{2}$.
Also f is onto Z since for any $n \geq 0, f(2 n)=n$ since $2 n$ is even, and for any $-n<0,2 n-1$ is odd so $f(2 n-1)=-(((2 n-1)+1) / 2)=-(2 n / 2)=-n$.

