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Exam I — Sample Solutions

Problem 1.
Proof by induction:
Basis case: n=0

!n
S
k=0

(2k+1) = 
!0
S
k=0

(2k+1) = 1 = 12 = (n+1)2 so true for n=0.

Induction step: assume true for n, prove for n+1

Inductive hypothesis: assume 
!n
S
k=0

(2k+1) = (n+1)2.

Extend induction (prove for n+1):
!n+1
S
k=0

(2k+1) = 
!n
S
k=0

(2k+1) + 2(n+1)+1 by rearrangement

= (n+1)2+2n+3 by inductive hypothesis
= n2+2n+1+2n+3 = n2 +4n+4 = (n+2)2 = ((n+1)+1)2 by algebra.

Therefore the induction is extended, and by induction the result is proven for all n.

Problem 2.
For parts (a) and (c) of this solution, assume the universe is E = {1, 2, 3}.

(a) (A « B) » (~A « B) = A » B is false —
for A = {1} and B = {2}, A » B = {1, 2} while (A « B) » (~A « B) = ∅ » {2} = {2}.

(b) (A–B) – C = (A–C) – B is true —
If xŒ(A–B) – C, then xŒ(A–B) and xœC and so xŒA and xœB. Hence xŒ(A–C) – B,
and (A–B) – C Õ (A–C) – B. Conversely, if xŒ(A–C) – B, then xŒ(A–C) and xœB
and so xŒA and xœC. Hence xŒ(A–B) – C, and (A–C) – B Õ (A–B) – C and the
proof is complete.

(c) (A–B) » (B–A) = ~(A « B) is false —
for A = {1} and B = {2}, ~(A « B) = {1, 2, 3} while (A–B) » (B–A)  = {1, 2}.

Problem 3.
The relation R is an equivalence relation. Since m mod 2 = n mod 2, either both m and n
must be even or both must be odd. This condition alone would yield the classes

[0] = {0, 2, 4, 6, … } and
[1] = {1, 3, 5, 7, … }.

But not all elements in one of these classes are equivalent under R. For instance,
(0,2)œR since (0 mod 3) ≠ (2 mod 3), and (0 mod 3) ≠ (4 mod 3), so (0,4)œR. On the
other hand, (0 mod 3) = (6 mod 3), so (0,6)ŒR. The added requirement that (m mod 3) =
(n mod 3) splits the even/odd classes above. Since there are three possible remainders
from division by 3, each of these two classes splits into three and the six equivalence
classes of R are:

[0] = {0, 6, 12, … } = {k•6 | kŒN} remainders 0,0 (from 2 and 3, respectively)
[2] = {2, 8, 14, … } = {2 + k•6 | kŒN} remainders 0,2 (from 2 and 3, respectively)
[4] = {4, 10, 16, … } = {4 + k•6 | kŒN} remainders 0,1 (from 2 and 3, respectively)
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[1] = {1,7,13, … } = {1 + k•6 | kŒN} remainders 1,1 (from 2 and 3, respectively)
[3] = {3, 9, 15, … } = {3 + k•6 | kŒN} remainders 1,0 (from 2 and 3, respectively)
[5] = {5, 11, 17, … } = {5 + k•6 | kŒN} remainders 1,2 (from 2 and 3, respectively)

Problem 4.
(a) The function is defined as

{ n/2, for n even
f(n) = {

{ –((n+1)/2), for n odd)
For an odd integer n, n+1 is even, and –((n+1)/2) is the desired negative integer.

(b) f is 1-1 since if f(n1) = f(n2), then n1 and n2 are either both even or both odd since
otherwise f(n1) is negative and f(n2) is not, or vice-versa. Then in case both are even
n1/2 = n2/2 implies n1 = n2. And in case both are odd, likewise –((n1+1)/2) =
–((n2+1)/2) implies n1 = n2.
Also f is onto Z since for any n≥0, f(2n) = n since 2n is even, and for any –n<0,  2n–1
is odd so f(2n–1) = –(((2n–1)+1)/2) = –(2n/2) = –n.


