
22C:185 - Fall 2004

page 1 of 3

Consistency of the Denotational and Axiomatic Semantics of Wren

Theorem: The denotational and axiomatic semantics of Wren with arrays are consistent.
That is, for any Wren command C and assertions P and Q, if |æ {P} C {Q}, and sto is a
store so that evaluate[P] sto = true, then evaluate[Q] sto' = true where execute[C]
sto = sto' .
Proof: (by structural induction)
I. We first show that the theorem holds for each of the atomic statements.

A. skip: C = skip
This case is clear by inspection.

B. Assignment — simple variable: C = X:= e
In this case P = Q[XÆe], and evaluate[Q[XÆe]] sto will proceed identically to
evaluate[Q] sto' except where X is encountered in Q. Where X is encountered in Q, e
appears in P, and since sto' = execute[C] sto = updateSto(sto, X, evaluate[e] sto),
evaluate[X] sto' = evaluate[e] sto . Since at every other point the evaluation steps
are identical, evaluate[Q] sto' = evaluate[P] sto = true. That is, evaluating X in
store sto' yields the same result as evaluating e in state sto, and since there are no
other points of difference if P evaluates true in sto, Q must evaluate true in sto' . A
rigorous proof of this case is actually another induction based on the structure of Q.

C. Assignment — subscripted variable: C = A[I]:= e
We assume that in the denotational semantics for subscripted variables, all the
functions associated with stores accept subscripted variables (e.g., A[1], A[2], etc.)
as well as simple variables. Then the 'evaluate' function is extended with the
additional case:

evaluate[A[I]] sto = applySto(sto, A[v]), where v = evaluate[I] sto
Also, to be applicable to pre/post-conditions, an extension to evaluate the array
value notation is necessary, namely:

evaluate[A<I:e>[j]] sto = if evaluate[I] sto = evaluate[j] sto
then evaluate[e] sto else evaluate[A[j]] sto

Then the added semantic equation for subscripted variable assignment is:
execute [A[I]:= e] sto = updateSto(sto, A[v], (evaluate[e] sto)),

where v = evaluate[I] sto.

Now for the proof. In this case P = Q[AÆA<I:e>], and evaluate[Q[AÆA<I:e>]] sto will
proceed identically to evaluate[Q] sto' except where A is encountered in Q. Where A
is encountered in Q, A<I:e> appears in P. Hence an evaluation of A[E] in Q using store
sto' is replaced by an evaluation of A<I:e>[E[AÆA<I:e>]] using store sto in P. The
potential difference in the subscripts requires careful analysis. In fact, the proof in
this case employs a (sub) induction on the depth of nesting of subscripted references
to A. For instance, A[2*A[A[3]+1]] has nesting level 2.

Basis case: n=0 (no nesting)
If there is no nesting, then A[E] in Q is replaced by P by A<I:e>[E] in P. Since E
does not involve A, its evaluation in sto and sto' produces exactly the same result

22C:185 - Fall 2004

page 2 of 3

(only A has been changed), say evaluate[E] sto = evaluate[E] sto' = p. But then
evaluate[A<I:e>[p]] sto = evaluate[A[p]] sto'. Since there are no other points of
difference, if P evaluates true in sto, Q must evaluate true in sto'. A rigorous proof
of this case is actually another induction based on the structure of Q.
Induction step: n=n+1
The induction hypothesis is that for all subscripted variable references A[E] with
depth of nesting n, evaluate[A<I:e>[E[AÆA<I:e>]]] sto = evaluate[A[E]] sto'. Let
A[F] be a subscripted variable reference in Q with depth of nesting n+1. Then at
the corresponding position in P we find A<I:e>[F[AÆA<I:e>]]. But F has depth of
nesting n and hence evaluate[F[AÆA<I:e>]] sto = evaluate[F] sto' = p. Then
evaluate[A<I:e>[F[AÆA<I:e>]]] sto = if evaluate[I] sto = p

then evaluate[e] sto
else evaluate[A[F]] sto

= evaluate[A[p]] sto' = evaluate[A[F]] sto'.

II. We next show that the theorem must be true for any compound statement, assuming
that it is true for its constituent statements.
A. Sequential control: C = C1; C2

If |æ {P} C {Q}, then for some assertion R, |æ {P} C1 {R} and |æ {R} C2 {Q}. By the
inductive hypothesis we assume that the result is true for the constituent commands
C1 and C2. That is, for any sto with evaluate[P] sto = true and execute[C1] sto =

sto1, then evaluate[R] C1 = true, and then if execute[C2] sto1 = sto2, evaluate[Q]
sto2 = true. But execute[C1; C2] sto = sto2, and so this case is proven.

B. if-then-else: C = if B then C1 else C2 end if
If |æ {P} if B then C1 else C2 {Q}, then |æ {P Ÿ B} C1 {Q} and |æ {P Ÿ ¬B} C2 {Q}.
By the inductive hypothesis we assume that the result is true for the constituent
commands C1 and C2. That is, if for sto, evaluate[P Ÿ B] sto = true and execute[C1]
sto = sto1, then evaluate[Q] sto1 = true, and if evaluate[P Ÿ ¬B] sto = true and

execute[C2] sto = sto2, then evaluate[Q] sto2 = true. But if evaluate[P Ÿ B] sto =

true, then evaluate[B] sto = true in which case execute[if B then C1 else C2] sto

= sto1, and so this case is proven. Similarly if evaluate[P Ÿ ¬B] sto = true, then

evaluate[¬B] sto = true and hence evaluate[B] sto = false. But then execute[if B
then C1 else C2] sto = sto2, and so this case is also proven.

C. If-then: C = If B then C1 end if
Similar to case II.B above.

D. while-do: C = while B do C1
Finally, suppose |æ {P} while B do C1 {P Ÿ ¬B}. Then |æ {P Ÿ B} C1 {P} and by
the inductive hypothesis we assume that the result is true for the constituent
command C1. Now assume that sto is a store with evaluate[P] sto = true and

execute[while B do c1] sto = sto' (if it exists). To prove this case, we need to prove

22C:185 - Fall 2004

page 3 of 3

that the post-condition, evaluate[P Ÿ ¬B] sto' = true. To prove this we need to
examine the definition of the state sto' . This is defined recursively,

 Ê sto, if evaluate[B] sto = false
 sto' =Ì

 Ë execute[while B do C1] sto1, if evaluate[B] sto = true,

where sto1 = execute[C1] sto . The truth of the post-condition is proven by a (sub)
induction on the depth of this recursion.
(sub) Basis case(depth 0 - no recursion): if there is no recursion, then evaluate[P]
sto = true, evaluate[B] sto = false, and sto = sto' , so evaluate[P Ÿ ¬B] sto' =
evaluate[P Ÿ ¬B] sto = evaluate[P] sto Ÿ evaluate[¬B] sto = true.
(sub) Induction step: assume that the post-condition is true for all recursions of
depth n≥0, and let sto' result from a recursion of depth n+1. Then evaluate[B] sto =
true and sto' = execute[while B do C1] sto1, where sto1 = execute[C1] sto . But

then execute[while B do C1] sto1 must lead to a recursion of depth n. Now since

evaluate[P Ÿ B] sto = true in this case, and |æ {P Ÿ B} C1 {P}, by the main induction

hypothesis, evaluate[P] sto1 = true. Now if evaluate[B] sto1 = false, then sto' =

sto1 and evaluate[P Ÿ ¬B] sto' = evaluate[P Ÿ ¬B] sto1 = evaluate[P] sto1 Ÿ

evaluate[¬B] sto1 = true. Or if evaluate[B] sto1 = true, then sto' results from a
recursion of depth n and by the depth of recursion induction hypothesis, sto' satisfies
the post-condition. Thus the (sub) induction is extended in either case, and the proof
of the while-command is complete.

This completes the main induction step for each of the constituent command types and
completes the proof for all commands.

III. Finally, we show that the theorem holds for strengthening pre-conditions,
weakening post-conditions, and array-value deductions.

A. Strengthening the pre-condition
Suppose that |æ {P} C {Q} follows from |æ {R} C {Q} and |æ P … R, where by
induction, the theorem holds for |æ {R} C {Q}. Suppose sto is a store so that
evaluate[P] sto = true. But then since |æ P … R, evaluate[R] sto = true. But then by
the inductive assumption, evaluate[Q] sto' = true where execute[C] sto = sto' .

B. Weakening the post-condition
Similar to case III.A above.

C. Evaluating array values
The definition of evaluate[A<I:e>[j]] sto (see case I.C) makes the validity of the
array-value proof rules immediately obvious.

