## Notes on Graph Coloring

This topic assumes that we are discussing simple (non-oriented) graphs.
A graph $G=(\mathrm{V}, \mathrm{E})$ is k -colorable if there is a function $\mathrm{c}: \mathrm{V} \square\{1,2, \ldots, k\}$ (the coloring function) so that if (a,b) $\square E$, then $c(a) \neq c(b)-$ that is, adjacent nodes must have "different colors". The smallest number k so that G is k -colorable is called the chromatic number of $G$, written $\square(G)$.

The complete graph on $n$ nodes, $K_{n}$, has every possible edge. Its chromatic number is $\square\left(K_{n}\right)=n$. For any tree $T, \square(T)=2$. Between these extremes, we find every possible variation. The only graphs $G$ with $\square(G)=1$ are the graphs consisting entirely of isolated nodes - if there is even one edge, we must have $\square(G) \geq 2$.

A graph is planar if it can be drawn in the plane with no edges crossing.
The complete bipartite graph $K_{m, n}$ has two subsets of nodes, one with $m$ nodes and the other with $n$ nodes. $K_{m, n}$ contains every possible edge from a node in one of the subsets to the nodes in the other, but no edges among nodes within the same subset. It therefore has $m^{*} n$ edges, while $\square\left(K_{m, n}\right)=2-$ color the nodes in one subset with one color, and the nodes in the other with the second.

Theorem: A graph G is planar if and only if it contains no subgraph "topologically equivalent" to $K_{3,3}$ or $K_{5}$.

Four Color Theorem: every planar graph is 4-colorable.

