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INTRODUCTION

The effort to analyze computers has given rise to many ideas for a
theoretical model of study. In terms of the amount of study given to such
models, A. M. Turing's [ 1] has probably been the most productive. How-
ever, in the last few years the idea of a finite automaton has appeared
more and more frequently in the literature. This is a model of a machine
which accepts only tapes of finite length and which has only a finite number
of (internal) states. The motivation of the study of finite automata is
provided by the assumption that such a model is more realistic than, for
instance, Turing's model.

In many of the studies of finite automata which have appeared, a
method for transforming a given automaton into another automaton is intro-
duced. We might cite as examples: reducing a machine to a machine with
a minimal number of states [2], [3], raising a machine to a power [4],
and forming the direct product of two automata [5].

This paper is devoted to a discussion of structure of automata. In
particular, the problem of which structure properties are preserved under
certain classes of transformations on automata is studied. It should be
noted that, for the results of this paper, the set of states was not assumed
to be finite. However, the results of this paper hold for finite automata
and a few remarks are made concerning the application of the results to
particular transformations.

The material following this introduction proceeds in four sections.
In the first section the assumed definition of an automaton is dealt with.
This definition is similar to that of Rabin and Scott [5], but is more
general in several respects. The remainder of this section defines

several structures on automata and explores their interrelations. It is
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also shown that a topology is naturally established on'the set of states of
each automaton.

The second section defines what is meant by a function on automata
and, in particular, a continuous function. The structure preserving
qualities of continuous functions are then investigated and are found to be
extremely desirable.

The third section defines and studies a type of function called
""operation preserving'. It is shown that such functions have an even ..:
stronger structure preserving nature than continuous functions. It is also
shown that a group, consisting of a particular set of functions, can be
associated with each automaton.

The material of the last section is suggested by the result of the
previous section which associates a group with each automaton. In
particular, the results of this section lead to an answer for the question:
when can the elements of the group associated with an automaton be

expressed in terms of the next state function of the automaton?




SECTION 1

STRUCTURES AND A TOPOLOGY ON THE SET OF STATES

The definition of an automaton taken here parallels that of Rabin
and Scott [5]. Occasionally a weighted, directed graph (state or transition
diagram) will be used but only to specify an example. The explanation of

this device is delayed until that time.

Definition 1.1 - An automaton, A = (S, I, M, f), is a quadruple where
S is a non-empty set (the set of states), I is a non-empty set (the set of in-
puts), M is a function (the next state function) taking Sx 1 (Cartesian product)
into S, f is a function (input composition) taking I x I into I such that (I, f)
is a semi-group.

Definition 1.1 differs from the usual definition in several respects:
first, the set of states is not assumed to be finite; second, the entire set
of inputs is included directly in the quadruple; third, the input composition
is arbitrary whereas it is usually assumed to be juxtaposition; lastly, an
initial state and a set of final states are not specified since in the study of
structure this is inessential information.

We now examine some structure properties of automata. Many of
the structures defined below are discussed briefly in the literature but in
most cases the properties have never been formally set down and their

interrelations examined.

Definition 1.2 - A set of states, TCS, of an automaton A = (S, I, M, {)
is open if given any s € T and any x€ I, M(s,x)e T.
Such a set is defined elsewhere in the literature as a stable set [ 6]

or a submachine, but the term ''open' is used here due to the topological
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nature and interpretation of the definitions and results to follow-

Theorem 1.1 - The union of arbitrarily many open sets of states
of an automaton A = (5,1, M, f) is an open set of states of A.
Proof: Set U =UV_ where V_cCS and V_is open for all a € K
K ¢ a a

(index set). Then for s e U, s ¢ Va for some a ¢ K. Then since Vu is open,

M(s, x) ¢ Vo. for all x € I. Thus M(s,x) e U for all xeI and so U is open.

Theorem 1.2 - The intersection of arbitrarily many open sets of
states of an automaton A = (5,1, M, f) is an open set of states of A.

Proof: Set U =NV _where V_€S and V_is open for all a e K
K @ a a

(index set). For any s €U, s ¢ Va for all a € K. Then since Va is open
for each a € K, M(s,x) e V(1 for all x €I and all ae K. Then M(s,x)e U

for all xe I and U is open.

Theorem 1.3 - For any automaton A = (S, I, M, f) the collection of
open sets of states of A yields a topology on S, the set of states.

Proof: Obviously the null set,d, and the set S are open. This
together with Theorems 1.1 and 1.2 establishes a topology [ 7].

Theorem 1.3 establishes all the structure results which hold for
general topological spaces for automata in terms of the open sets of
Definition 1.2, Thus we could, for example, follow the topological defini-
tion of limit state (point) and closed set and the usual well-known results

would already be established.

Definition 1.3 - An automaton A = (S, I, M, {) is sequential if

M(s, f(x,v)) = M(M(s,x),vy) for all s €S and x,y € I.
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It should be noted that under the definition of an automaton by Rabin

and Scott [5] (and similiar considerations due to Moore [ 3], Mealy [ 2],
etc.) where the input composition is taken to be juxtaposition, the next
state function is usually defined on a set of generators and then extended
to the entire semi-group by means of the relation in Definition 1.3. Thus
a '"finite automaton'' is usually considered to be sequential by definition.
Definition 1.3 deserves one more comment. It will be seen that not only
is sequentialness a natural concept, but for many of the results of this

section and the next it is indeed necessary.

Definition 1.4 - An automaton A = (S,1, M, f) is strongly connected

if given any S szé S, there exists an x € I such that M(sl, x) = S5-
The concept of strongly connectedness was first defined and

investigated by Moore [ 3].

Theorem 1.4 - If an automaton A = (5,1, M, f) is strongly connected,
then there is no proper open subset of S.

Proof: Assume U C S is a proper open subset. Then S - U # ¢.
If sle U and 55 € S-U, then M(sl,x) € Ufor all xe I since U is open. But
s2¢ U, hence M(sl,x) £ s, for all xe I. Thus A is not strongly connected,

a contradiction. Hence there is no proper open subset of S.

Lemma 1.1 - If an automaton A = (S, I, M, f) is sequential, then
for each s ¢ S, Ts = {sll sle S, M(s,x) = Sl} (i.e., the set of all S such
that M(s, x) = Sy for some x € I).is an open set.

Proof: Assume Ts is not open. Then there exists s, € TS and

x €I such that M(sl,x) = 524: Ts. Now since s € Ts’ s = M(s, v).




But then
M(s, f(y,x)) = M(M(s, y),x) = M(sl,x) =s, ¢ Ts, a contradicti on since

f{y,x)e I. Thus Ts is open.

Theorem 1.5 - If A = (S,I,M,1f) is a sequential aut omaton with
no proper open subset of S, then A is strongly connected.

Proof: Assume A is not strongly connected. Then there exist
$,: 85 € S such that M(sl,x) # s, for all xe 1. Now by Lemma 1.1
Tsi = {s I s € S, M(sl,x) = s} is open. But sz¢ Tsl Hence Tsl is a
proper open subset (T§1 is not empty since I is not empty), a contra-
diction. Thus A is strongly connected.

Two remarks are appropriate at this point: first, Theorems 1.4
and 1.5 can be stated in terms of a necessary and sufficient condition for
strongly connectedness when the definition of an automaton assumes the

property of sequentialness [6]. It will be necessary to use Theorem 1.4

frequently without the sequential property. Second, Theorem 1.5 is false

if the sequential property is omitted as can be seen by the following example.

EXAMPLE 1
a

Q f(a, a) = a
a

The device used to specify the automaton of Example I is called a state (or
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transition) diagram. Its meaning is:
the set of states, S = {a,b}, is the set of vertices of the graph;
the set of inputs, I = {a} , is the set of weights of directed edges;
the next state function, [ M(a,a) = b, M(b, a) = a], is specified by
the directed edges and their weights;

the input combination is specified in the margin (if not understood).

Notice that the automaton Example I is not strongly connected, but
there is no proper open subset of states. This possible since the property

of sequentialness is not present.

Definition 1.5 - An automaton A = (5,1, M, f) is triangular if given

any s, s, € S, there exists x,y€ I and s € S such that M(sl,x) =s = M(sz,y).

Definition 1.6 - An automaton A = (S, I, M, f) is notconnected if
there exist non-void, open sets U, VCS such that UVV =S and UNYV = ¢;
otherwise A is connected.

We mention that an automaton is connected if and only if its state

diagram constitutes a connected graph.

Theorem 1.6 - If an automaton A = (S, I, M, f) is triangular, then
A is connected.
Proof: Assume A is not connected. Then there exist non-void,

open U, VCS such that UUV =S and UNV =¢. Now let s, € U and sze V.

1
Then since A is triangular there exist x,y €I and s € S such that
M(s|,x) = s = M(s,,y). Now since UNV =¢ and UVV =S either s ¢ U

or se V. In the first case V is not open and in the second case U is not

open, a contradiction. Thus A is connected.
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We now introduced one more concept of structure and conclude the

discussion of the interrelations arising.

Definition 1.7 - An:automaton A = (S,1I, M, f) is bi-connected if
whenever there exists an x€ I such that M(sl,x) =85, then there exists a

y € I such that M(sz,y) =8, where s1» S,¢ S.

2

This concept resembles closely that of strongly connectedness
except that it is not assumed that a transition exists between every pair of

states. However we have the following:

Theorem 1.7 - I A = (S,I, M, ) is a sequential automaton, then
a necessary and sufficnet condition that A be strongly connected is that A
be connected and bi-connected.
Proof: (Sufficiency)
Suppose that A is not strongly connected. Then there
exist 51,5, €5 such that M(sl,x) £ s, for all x¢ I. Now by Lemma 1.1

Tsl = {s|se S, M(s,,x) = s} is open.

But since A is bi~-connected S - TSl is also open. For suppose
there exists s€ (S - Tsl) such that M(s, z) =t € Tsl for some z€¢ I. Then
by bi-connectedness there exists we I such that M(t, w) = s. But then Ts1
isnot open, a contradiction. Now TSl and S - 'I‘S1 are both open and Tsl
is not empty since I is not empty. Also s, € (S - Tsl) so S - TSl is not
empty. But we have TSIU (s - Tsl) = S and Tslﬁ (S - Tsl) =¢. Thus A
is not connected, a contradiction. Thus A is str-ngly connected.

The necessity of the condition is entirely obvious in the light of

Theorem 1.4
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Corollary 1.1 - If A =(S,I, M, ) is a sequential automaton, then
a necessary and sufficient condition that A be strongly connected is that
A be triangular and bi-connected.

Proof: Apply Theorems 1.6, 1.7 and the definitions.

Corollary 1.2 - If A =(S,1I, M, f) is a sequential, bi-connected
automaton, then the complement of every open set is open.
Proof: The proof of this fact is essentially the proof given in

Theorem 1.7 to show T, being open implies S -~ TS is open.
1 1

It is also interesting to note that sequentialness cannot be removed

from the hypothesis 6f Theorem 1.7 for Example I provides a counter-

example in this case.




SECTION 2

STRUCTURE PRESERVING PROPERTIES OF CONTINUOUS FUNCTIONS

In this section an investigation is begun of the relationship of the
structure of a transformed automaton to the structure of the given automaton.
In particular the concept of a continuous function of one automaton into

another is defined and its structure preserving properties studied.

Definition 2.1 - For two automata, A = (S,I, M, f) and B = (T, J, N, g),
by a function, h, of A into B, written h:A—3 B, is meant a function of
S into T.

That is, a function on an automaton is merely a function on its set
of states. For h, A and B as in Definition 2.1, the following usual notation
will be used:

by the image, h(X), of a set XC'S under h is meant the set

h(X) = {tlh(x) =t,x€ X} C T and by inverse image h-l(Y), of a set

YC T is meant the set h-l(Y) ={s|s€ S, h(s)e Y} CS.

Definition 2.2 - A function h:A—3B, where A = (S,1I, M, f) and
B = (T,J,N,g), is continuous if for any open YC T, h-l(Y) C S is open.
Or briefly; open sets come from open sets. The term continuous

is chosen since Definition 2.2 is precisely the topological definition of a

continuous function when A and B are topological spaces [ 7].

Definition 2.3 - A function h:A—¥ B, where A = (S, I, M, f) and

B =(T,J,N,g), is open if for any open XCS, h(X)C T is open.

Theorem 2.1 - Let A =(S,I, M, f) be a strongly connected autom-

aton and B = (T, J, N, g) be a sequential automaton. Then if h:A—B is a
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continuous, onto function, B is strongly connected.

Proof: Assume B is not strongly connected. Then there exist
tl, tZ € T such that N(tl,x) ;! t2 for all xe J. Now by Lemma 1.1
Ktl = {tl‘te T, N(tl,x) = t} is an open set. Then since h is continuous

h"l(Kt )C S is open. Then by Theorem 1.4 h-l(Kt ) = S, since A is
1

1
strongly connected. Thus we have h(S) = Kt and t2¢ Kt . But h was
1

assumed to be onto, a contradiction. Hence B is stronglly connected.

Corollary 2.1 - Let A = (S,I, M, f) be a sequential automaton and
B = (T, J, N, g) be a strongly connected automaton. Then if h:A—» B is an
open, one-to-one, onto function, Ais strongly connected.

Proof: Under the hypothesis h_lzB—»A is a continuous, onto
function, so apply Theorem 2.1.

Before the next theorem is stated we must make reference to
several well-known set equalities which hold for functions in general.

Let £:5S—T be a function. Then the following statements hold:
g

() £ 5auB) = £ layueiB); A BCT.

2) £ 5anB) = £ layne i), A BCT.
(3) f(AUB) = f(A)U {(B); A,BCS.
(4) f(ACB) = f(A)n £(B); A,BCS.

Theorem 2.1 - Let A = (S, I, M, f) be a triangular automaton and
B = (T,J, N, g) be a sequential automaton. Then if h:A—B is a continuous,
onto function, B is triangular.

Proof: Assume B is not triangular. Then there exists t;,t, €T

such that N(tl,x) £ N(tz, y) for all x;, y € J. Certainly t) ;th or else
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N(tl,x) = N(tz,x) for all xe I. Now by Lemma 1.1 the sets

K :{th(tl,x) = t} and Kt ={t|N(t2,x) =t } are open and Kt N Kt = 0.

£ 2 1 B2
Now by Statement (2)
-1 -1
$=h "(¢) =h (K NK )
1 2
-1 -1
= h "(K_)Nh (K ).
t t
1 2
Let K, =h—1(K ) and K =h_l(T ). Then we have K, N K, = 6. Also
ty 2 ty 1 2
since h is continuous K1 and K2 are open sets. Now Kt and Kt are not

71 2
empty, since Il is not empty and h is onto. So Kl and K2 are not empty.

So let sle Kl and 5,€ KZ' Then since A is triangular, there exist s€ S
and w, z € I such that M(sl, w) =8 = M(sz, z). Now since Klﬁ K, = ¢ either
s€K;, s €K, orsg (S - (KlU K,)). In the first case K, is not open, in
the second K1 is not open and in the last case neither K1 nor KZ is open,

a contradiction in any circumstance. Thus B is triangular.

Corollary 2.2 - Let A = (5,1, M, f) be a sequential automaton and
B = (T,J, N, g) be triangular. Then if h:A—B is an open, one-to-one,
onto function, A is triangular.

Proof: Under the hypothesis h-I:B—OA is continuous and onto.

Theorem 2.3 - Let A = (S;I, M, f) and B = (T, J, N, g) be two
automata and let A be connected. Then if h:A—»B is a continuous, onto
function B is connected.

Proof: No proof of this theorem need be given here since all
the concepts involved are topological in nature and the topological counter-

part of this theorem is valid.
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Corollary 2.3 - Let A =(S,I,M,f) and B = (T, J, N, g) be two
automata and B be connected. Then if h:A—B is an open, one-to-one,
onto function, A is connected.

Proof: As in Corollary 2. 2.

Theorem 2.4 - If A = (S,1I, M, ) is a strongly connected automaton
and h is any function onto A, then h is continuous.
The proof of Theorem 2.4 is trivial in the light of Theorem 1.4 but

we have the following interesting:

Corollary 2.4 - If his any function of one automaton onto another
which preserves strongly connectedness, then h is continuous.

Thus we have that the set of all functions on automata which preserve
strongly connectedness is contained in the set of all onto, continuous
functions. Moreover if we combine Corollary 2.4 with Theorem 2.1 we
can make the following extremely important and desirable statement: For
the set of all sequential automata, a necessary and sufficient condition that
a function preserve strongly connectedness is that it be continuous.

We have seen that continuous functions on automata have many
desirable structure preserving properties. It is also interesting to notice
that due to Theorem 1.3 we could have followed the topological definitions
of a limit state (point) and a closed set of states and not only obtained the
results pertaining to these concepts but also could have now given the usual
necessary and sufficient condition(s) in terms of these concepts for a
function to be continuous.

We also point out that for almost all the results where a continuous
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function preserves a structure it is necessary to the proof that the image
automaton be sequential. It is easy to construct examples which show
that with this restriction removed those theorems are in fact false. For
instance, any function from a strongly connected (in fact any) automaton
onto the automaton of Example I is necessarily continuous. However,
recall that this automaton is not strongly connected. Also if our ideas
were extended to models with outputs, both the reduction processes of
Mealy [ 2] and Moore [.3] would be continuous.

To conclude this section, we state an example which shows that
the structure of bi-connectedness is not necessarily preserved by continuous

functions.
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EXAMPLE I

«%

vB

where the input composition is the usual juxtaposition (generators a, ) in
both cases and thus A and B are sequential. Of course the transitions are
not completely labeled and not all transitions are depicted. For instance in
A, M(-b, Ba) = -b and B, M(az, aa) = cz.

Now we define h:A—)B by h(x) = xZ. Then it is easily checked that

h is continuous and onto. However, A is bi-connected but B is not.




SECTION 3

STRUCTURE PRESERVING PROPERTIES OF OPERATION PRESERVING
FUNCTIONS AND THE GROUP OF AN AUTOMATON

In this section we leave the general concept of continuous functions
on automata and study a more specialized class of functions. We introduce
the concept of operation preserving functions on automata and investigate

their properties.

Definition 3.1 - If h:A—B, where A = (S,I, M, f) and B=(T, L, N, g),
satisfies h[ M(s,x)] = N(h(s), x) for all s &€ S and x e I, then h is operation
preserving. A concept similar to this, but for machines with outputs,
has been briefly discussed by Ginsburg. [ 6]

We notice that Definition 3.1 applies ohly when A and B have semi-
groups of inputs which are identified setwise. This restriction could be
removed by establishing a correspondence between the input set of A and
the input set of B (if they were different), but this complicates the discussion

unnecessarily while yielding no significant refinement in the results.

Theorem 3.1 - If h:A—B, where A = (S,I, M, f) and B=(T,I, N, g)
is operation preserving, then h is continuous.

Proof: Let T1C T be open and let s1€ h—l(Tl)CS. Then for
each x ¢ I consider s, = M(s},x). h(s,) = h[ M(s . x)] =N[h(sl),x)] =t

Now since h(sl) €T, and T, is open h(sz) =t,€T But then

s5,¢€ h_l(Tl) and thus h—l(Tl) is open and h is continuous.

1

Theorem 3.2 - If htA—B, where A = (S,I, M, f) and B=(T, L, N, g),
is operation preserving, then h is open.
Proof: Let Sl C S be open and t, e h(Sl) and x € I be arbitrary.

Then tl = h(sl) for some s, ¢ Sl’ Then since S1 is open, M(sl,x) € S1
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for all x€ I so we have N(tl,x) = N(h(sl),x) = h[ M(sl,x)] € h(Sl) for all
x & I. Thus h(Sl) is open and so h is open.

Theorem 3.1 and Theorem 3.2 show that the class of all operation
preserving function is a subclass of both the continuous and the open
functions. Hence we may write, though space to do so will not be taken
here, as corollarys to these theorems each of the results of Section 2
which deals with preservation of a structure by either a continuous or open
function.

The following three theorems show that operation preserving functions
have a much stronger structure preserving nature than continuous functions.
In particular, Theorems 3.3 and 3.4 show that the restriction of
sequentialness can be removed for operation preserving functions and
Theorem 3.5 shows that bi-connectedness is preserved by operation pre-

serving functions.

Theorem 3.3 - If h:A-—%B, where A=(S,I, M, f) and B=(T, L, N, g)
is an operation preserving, onto function and A is triangular, then B is
triangular.

Proof: Let tl’ tze T. Then since h is onto there exists
S 8,¢€ S such that h(sl) =t and h(sZ) = t2' Now since A is triangular
there exists x,ye I and s € S such that M(sl,x) =s = M(sz, y). But then
B[M(s . %)] = N[h(s,),x]=N(t}, %) = h(s) = h[ M(s,, y)] = N[h(s,), y] =Nit,, y).

Hence B is triangular.

Theorem 3.4 - If h:A—B, where A=(S,I, M, f) and B=(T,L N, g),
is an onto operation preserving function and A is strongly connected, then

B is strongly connected.
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Proof: Let tl, ’c2 € T. Then since h is onto there exists
S1»8, ¢ S such that h(sl) = tl and h(sz) = tZ’ Then since A is strongly

connected there exists x € I such that M(sl,x) =5 But then

Y

h[ M(s |, x)] = N(h(s;,x) = N(t},x) = h(s,) =t,. Thus B is strongly connected.

2) 2

Theorem 3.5 - If h:A—B, where A=(S,I, M, f) and B=(T, I, N, g),
is an onto, operation preserving function and A is bi-connected, then B is
bi-connected.

Proof:

Let tl, ty € T such that N(tl,x) = ‘c2 for some x¢ I. Then since h is
onto there exists 5,¢ S such that h(sl) =t But then for

s, = M(s},x), h(s,) = h[ M(s ), x)] = N(h(s;),x) = N(t;,x) = t Thus

2
h(SZ) =t,. Now A is bi-connected so there exists y € I such that
M(s,,y) = s and then t; = h(s) = h[ M(s,, )] = N(h(s,), y) = N{t,, y).
Thus B is bi-connected.

So we see operation preserving functions have a much stronger
structure preserving nature than continuous functions. This idea is further

emphasized by the following theorem which has no counterpart for con-

tinuous functions,

Theorem 3.6 - If h:A—B, where A=(S,I, M, f) and B=(T, I, N,g),
is an onto, operation preserving function and A is sequential, then B is
sequential.

Proof: Since h is onto, for each t¢ T there exists s € S such that
h{s) = t. Then

N(t, £(x, y)) = N(h(s), £(x, y)) = h[ M(s, f(x, y))]

i

h[ M(M(s,x),y)] = N(u[M(s,x)],y)

= N{(N(h(s), x),y) = N{(N(t, x), y)
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since h is operation preserving and A is sequential. Thus B is sequential.

It is interesting to notice that Theorem 3.6 is not true if the input
compositions are distinct. The example below shows an operation preserving
function carrying a sequential automaton onto a non-sequential automaton.
Notice that the only thing that distinguishes the two automata is the input

composition.

EXAMPLE III
1

f(x,y) = x+y(mod 2)

Define h(x) by h(x) = x'

Theorem 3.7 - The set of all functions h:A—3A, where
-2 A = (S,I, M, {), which are one-to-one, onto and operation preserving form
a group.
Proof: The operation taken is the usual composition of functions.

We have closure since if hl’ hZ:A——vA are 1-1, onto, operation preserving,
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then hih, is 1-1, onto and h h,[M(s, x)] = hl[M(hz(s),x)] =M(h h,(s), x)

S0 hth is operation preserving. Also it is well known that composition
of functions is associative in general. Now the identity, i(s) = s, is
certainly 1-1, onto and operation preserving, so it is in the set. It remains
to show that inverses exist in the set. Suppose that h:A—3A is 1-1, onto
and operation preserving. Then certainly h-l:A_;A defined by h-l(x) =y

if and only if h(y) =x is 1-1 and onto and hh-l(s) = s = i(s). Now let

M(s, x) = s; and M(h—l(s),x) =s Then

2
h(s,) = h[M(h_l(s),x)] = M(hh—l(s),x) = M(s, x) = s, But since

h(s

-1 -1 -1 -1
2) =85, h (s)) = s,. Thus h "[M(s,x)] =h (s)) = s, = M(h™ “(s), x).
So h“1 is operation preserving and hence in the set and the proof is
complete.

Theorem 3.7 is an extremely interesting result in that it

associates with each automaton a group. In this connection we make

Definition 3.2 - For each automaton A = (S, I, M, f) we denote
by G(A) the group associated with it by Theorem 3. 7.

The general development to be followed now is suggested by the
following interesting question: what relationships exist relating the
structure of the automaton to the structure of the group associated with it ?

After the results of Section four have established we will be
able to make one statement in this regard, but otherwise such results are
unknown to the author. However, the last results of this section relate to

this question.

Theorem 3.8 - If A = (3,1, M, f) is a strongly connected automaton,

then K[G(A)] = K[S] (where K[ X] denotes the cardinality of the set X).
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Proof: Assume K[ G(A) > K[ S] and let s, € S be any state.
Consider the set {h(sl)} for all h € G(A). Since K[ G(A)] > K[S], there
must exist distinct hl’ h2€ G(A) such that hl(sl) = hZ(sl)‘ Now let s€ S
be any state. Then since A is strongly connected there exists x ¢ I such
that M(sl,x) = s. But then

h(s) = hl[M(sl,x)] = M(h;(s)),x) = M(h,(s ) x) = hZ[M(sl,x)] =h,(s).

Then since s is arbitrary h1 = hZ’ a contradiction. Thus K[G(A)] =K(S).

Corollary 3.1 - If A =(S,I, M, f) is a strongly connected automaton
and hl’ hZ:A——-)A are operation preserving and hl(sO) = hZ(sO) for some

=h

soeS, then hl 2

Proof: The proof of this somewhat more general statement is
exactly the argument used in Theorem 3.8. Corollary 3.1 tells us that
if h € G{A) and A is strongly connected, then h has no fixed points (unless
h is the identity).

The statement of the next theorem is due to Weeg [ 8] and was first
proven by him. A proof is given here for two reasons. First, Weeg's
proof follows strictly from group theoretic arguments while the proof given
here relies only on statements concerning the automaton. Second, the
proof given here brings to light an interesting corollary not suggested by

Weeg's proof.

Theorem 3.9 - If A =(S,I, M, f) is a strongly connected automaton

with n states, then the order of G(A) divides n.

Proof: First, by Theorem 3.7, G(A) is finite. Now suppose

that G(A) = {h,,h h} '{S— s s }(kfn) and consider the
phps oy S = sys,, s | .
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rectangular array of states

hl(sl) hZ(sl) Coe hk(sl)
hl(sz) Ce hk(sz)
hl(sn) hz(sn) NN hk(sn)

By Corollary 3.1 each row of this array consists of k distinct
states. We show that each pair of columns either constitute disjoint sets

or are identical (up to permutation).

-h

Suppose hi(sn) = hj (st). Then
-1 . -1 -1
h. h.(s )=i(s. )=s_=h, "h.(s,). Leth, h.=h Then
1 1'u u u 1 )t 1 J
1(su) = hm(st)
hli(sn)z hl(su) = hlh (st)

k(su) = hkhrn(st)

And of course h.h_ #h.h__ fori #j or else h, = h,. Hence any two columns
i'm’” Ti'm i j

are either completely disjoint or precisely the same set. Now of course
all the states d A appear in the above array since some hi is the identity.
So if only the distinct columns are considered each state must appear
precisely once. Thus if there are v distinct columns we havek . v=n
or k|n.

We now write the essential statement made in Theorem 3.9 more

concisely as Corollary 3.3. If A = (5,1, M, f) is a strongly connected
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automaton and

S = {sl,sz,...,sn§ and G(A):{hl,hz,...,hk},

then for

n
s. = U hi(sj), i=1,2,...,k.

We have

siﬂsj = ¢ors, =851 j=1,2,... k.




SECTION 4
REPRESENTATION OF THE GROUP ELEMENTS OF AN AUTOMATON
BY ITS NEXT STATE FUNCTION

In this section we investigate further ideas suggested by the fact
that a group is associated with each automaton. Now each element of the
group of an automaton is a function from its set of states to its set of
states. If we restrict the next state function to a single input symbol this
is precisely the manner in which it maps. With this motivation in mind
we now state the question which is answered in this section: when can
the elements of the group of an automaton be expressed in terms of its
next state function? To resolve this question we introduce, and give some

investigation to, just one new concept.

Definition 4.1 - An automaton A = (S,I, M, f) is abelian if for each
s€Sand x,y €I, M(s, f(x,y)) = M(s, f(y, x)).

This structure seems somewhat artificial at first. However, it
is an extremely powerful tool and does arise naturally in the light of the

question to be answered in this section as is shown by

Theorem 4.1 - Let A = (S,I, M, f) be a sequential automaton and

h € G(A). Then if h(s) = M(s,xo) for some x.€ I, M(s, f(xo, y) = M(s, f(y, xo))

0
for all ye I and s€ S.

Proof: Since h is operation preserving h[ M(s, y)] = M(h(s), y)

for all se S, y€l. But h[M(s, y)] = M(M(s, y), x M(s, f(y, x,)) since A

o) = o)

is sequential .and M(h(s), y) = M(M(s, xo), y) = M(x, f(xo, y)) since A is sequential.

Thus
M(s, f(y, %5)) = Ml(s, f(xy, v)).
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In connection with Definition 4.1 we also notice that the automaton A is
abelian if its input semi-group (I, f) is abelian. The only automaton

exhibited thus far which is not abelian is automaton B of Example II.

Theorem 4.2 - If h:A—B, where A = (S,I, M, f) and B = (T, I, N, f),

is an onto operation preserving function and A is abelian, then B is abelian.

Proof: Lette T. Then since h is onto there exists s ¢ S such
that h(s) = t. Then N(t, f(x, y)) = N(h(s), f(x, y)) = h[ M(s, £(x, y))] = [M(s, f(y, x))]
= N(h(s), f(y, x)) = N(t, f(y, x)) since A is abelian and h is operation preserving.
Thus B is abelian.

We remark that it is easy to construct a counter example to
Theorem 4. 2 if the input compositions are allowed to be distinct. Also

there is no statement for continuous functions corresponding to Theorem 4. 2.

Theorem 4.3 - Let A = (S,1I, M, f) be an abelian, sequential
automaton. Then for each X € I, h defined by h(s) = M(s, xo) is an opera-
tion preserving function of A into A.

Proof: Let h(s) = M(s,x,). Then h[M(s, x)] = M(M(s, x), %)

= M(s, f(x, xO)) by sequentialness
= M(s, f(xo,x)) by abelianness
= M(M(s,xo),x) by sequentialness
= M(h(s), x).

Thus h is operation preserving.

The next theorem provides the answer for the question we posed at

the beginning of this section. Namely, we give sufficient conditions for
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writing an element of the group of an automaton in terms of the next state

function.

Theorem 4.4 - Let A = (S,I, M, f) be an abelian, sequential, strongly

connected automaton. Then for each h € G(A), h(s) = M(s, xo) for some x . € I.

0

Proof: Let h e G(A) and s, € S and suppose h(sl) =s Then

2
since A is strongly connected there exists X €I such that M(sl,xo) =5,.

Let h'(s) = M(s,xo). Then by Theorem 4.3 h'(s) is an operation preserving

function. But h'(sl) =h(sl). Thus by Corollary 3.1 h(s) £ h'(s) EM(s,xO).

Theorem 4.4 is an extremely powerful result. It presents us with
the machinery to prove a result, as mentioned in section 3, which relates the

structure of G(A) to the structure of A.

Theorem 4.5 - If A = (S,I, M, ) is an abelian, sequential,

strongly connected automaton, then G(A) is abelian.

Proof: Let hy, h, € G(A). Then by Theorem 4.4, h(ls)'z M(s,xl)
and hz(s) = M(s,xz) for some XX, & I.
Now hih,(s) = M(M(s, x,), %)

= M(s,f(xz,xl)) by sequentialness
= M(s, f(xl,xz)) by abelianness
= M(M(s,xl),xz)) by sequentialness
= hZhl(s)'
Thus hlh2 = hzh1 and G(A) is abelian.
An interesting (and open) question is the existance of other results of
the form of Theorem 4.5. It would be particularly interesting if it could be

shown that certain structure properties on G(A) force particular structure

properties on A.
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