1a. To show that \triangle is an equivalence relation, we must show that it is i) reflexive, ii) symmetric, and iii) transitive.
i) To show reflexivity, it must be shown that $\mathrm{m} \triangle \mathrm{m}$ holds. Since the set of digits in m is obviously the same as the set of digits in itself, \triangle is reflexive.
ii) To show symmetry, it must be shown that if $m \triangle n$ holds, $n \triangle m$
must also hold. If $m \triangle n$ holds, then m and n have the same set of digits appearing in them, therefore, $\mathrm{n} \triangle \mathrm{m}$ must hold.
iii) To show transitivity, it must be shown that if $\mathrm{m} \triangle \mathrm{n}$ holds, and $\mathrm{n} \triangle \mathrm{o}$ holds, $\mathrm{m} \triangle \mathrm{o}$ must hold. Since $m \triangle n$, the sets of digits appearing in m and n are the same. Since $n \triangle o$, the sets of digits appearing in n and o are the same. Therefore, the sets of digits appearing in m and o are the same, and $\mathrm{m} \triangle \mathrm{o}$ holds.
b. The equivalence classes of Nat under \triangle are the members of the power set of the digits 0-9. Since \triangle compares the sets of digits appearing in members of Nat, equivalence classes will be

$$
\begin{aligned}
& \triangle[0]=\{0\} \\
& \triangle[1]=\{1,11,111, \ldots\} \\
& \ldots \\
& \triangle[0123456789]=\{1023456789,1023456798, \ldots\}
\end{aligned}
$$

c. \triangle is not a congruence for addition. For example, $m=15, n=51, j=10, k=100 . m \triangle n$ and $j \Delta k$, but $\mathrm{m}+\mathrm{j}=25$ and $\mathrm{n}+\mathrm{k}=151$. Clearly, $25 \triangle 151$ does not hold, so $\mathrm{m}+\mathrm{j} \triangle \mathrm{n}+\mathrm{k}$ does not hold, so \triangle is not a congruence for addition.

See website for Miranda solutions to 2 and 3 .

