22c:181 Spring 2006 Homework #6 Solution

1a. To show that \triangle is an equivalence relation, we must show that it is i) reflexive, ii) symmetric, and iii) transitive.

i) To show reflexivity, it must be shown that $m \triangle m$ holds. Since the set of digits in m is obviously the same as the set of digits in itself, \triangle is reflexive.

ii) To show symmetry, it must be shown that if $m \triangle n$ holds, $n \triangle m$

must also hold. If $m \triangle n$ holds, then m and n have the same set of digits appearing in them, therefore, $n \triangle m$ must hold.

iii) To show transitivity, it must be shown that if $m \triangle n$ holds, and $n \triangle o$ holds, $m \triangle o$ must hold. Since $m \triangle n$, the sets of digits appearing in m and n are the same. Since $n \triangle o$, the sets of digits appearing in n and o are the same. Therefore, the sets of digits appearing in m and o are the same, and $m \triangle o$ holds.

b. The equivalence classes of Nat under \triangle are the members of the power set of the digits 0-9. Since \triangle compares the sets of digits appearing in members of Nat, equivalence classes will be

 $\Delta[0] = \{0\}$ $\Delta[1] = \{1, 11, 111, ...\}$ \dots $\Delta[0123456789] = \{1023456789, 1023456798, ...\}$

c. \triangle is not a congruence for addition. For example, m = 15, n = 51, j = 10, k = 100. $m \triangle n$ and $j \triangle k$, but m+j = 25 and n+k = 151. Clearly, $25 \triangle 151$ does not hold, so $m+j \triangle n+k$ does not hold, so \triangle is not a congruence for addition.

See website for Miranda solutions to 2 and 3.