
1

Homework V Sample Solution

There are numerous ways to solve this problem, so your solution might be quite different
than this one.

The basic types are unchanged so the first difference is the state space where an
additional variable is incorporated to identify the listed phones, including an invariant
condition pertaining to it.

PhoneDB
 members: PP Person
 listed: PP Phone
 telephones: Person ´ Phone

 dom telephones Õ members
 listed Õ ran telephones

It might be desirable to also change the initial state schema. However, this is actually not
required -- since telephones = ∅ and listed Õ ran telephones, it can be inferred that
listed = ∅.

Hence we proceed to the specifications of the new operations.

UnList
 DPhoneDB
 people?: PP Person
 number?: Phone

 number? Œ listed
 people? = telephones~({number?})
 listed' = listed \ {number?}
 telephones' = telephones
 members' = members

2

Since there are obviously exceptional conditions for the UnList operation, we add a
schema to treat them.

UnListFailure
 XPhoneDB
 people?: PP Person
 number?: Phone
 rep!: Report

 number? œ listed \/ people ≠ telephones~({number?})
 rep! = UnList_Error

The completed operation is then defined by a schema expression in the usual way.

DoUnList =^= UnList /\ Success \/ UnListFailure

Now we go on to the second new operation.

ReList
 DPhoneDB
 people?: PP Person
 number?: Phone

 number? Œ ran telephones /\ number? œ listed
 people? = telephones~({number?})
 listed' = listed » {number?}
 telephones' = telephones
 members' = members

Again we need an exceptions schema to put together the complete operation
specification.

ReListFailure
 XPhoneDB
 people?: PP Person
 number?: Phone
 rep!: Report

 number? Œ listed \/ number? œ ran telephones \/ people ≠ telephones~({number?})
 rep! = UnList_Error

DoReList =^= ReList /\ Success \/ ReListFailure

3

In addition, we need to consider changes that are necessitated to other operation
schemas to reflect and support this new feature. There turn out to be several that are
warranted.

First of all, the AddEntry operation must be updated for the new state space.

AddEntry
 DPhoneDB
 name?: Person
 newnumber?: Phone

 name?Œmembers
 name? a newnumber? œtelephones
 telephones' = telephones » {name? a newnumber?}
 members' = members
 listed' = listed » {name? a newnumber?}

This leaves the FindPhones and FindNames operations to be modified to honor refusing
to reveal information about unlisted phones. First, the normal FindPhones operation
makes sure all phones are listed.

FindPhones
 XPhoneDB
 name?: Person
 numbers!: PP Phone

 name? Œ dom telephones
 telephones(({name?})) Õ listed
 numbers! = telephones(({name?}))

Since this introduces an additional exception (i.e., the presence of an unlisted phone),
we add a schema o treat it, plus revise the schema expression for the completed
operation. This approach reports the listed numbers, and indicates the existence of an
unlisted number.

UnListedPhone
 XPhoneDB
 name?: Person
 numbers!: PP Phone
 rep! : Report

 name? Œ dom telephones
 telephones(({name?})) \ listed ≠ {}
 numbers! = listed « telephones(({name?}))
 rep! = Unlisted_Phone

4

DoFindPhones =^= FindPhones /\ Success
\/ UnknownName \/ UnlistedNumber

Lastly, we have similar changes for the FindNames operation.

FindNames
 XPhoneDB
 names!: P Person
 number?: Phone

number? Œ listed
 names! = telephones~(({number}))

An exceptional case is added so that for a known but unlisted number, no names are
revealed.

UnlistedNumber
 XPhoneDB
number?: Phone
 rep!: Report

number? Œ ran telephones \ listed
rep! = 'Unlisted_Entry'

DoFindNames =^= FindNames /\ Success
\/ UnknownNumber \/ UnlistedNumber

Of course, the new error messages must also be added to the Report type.

The Zans version of this specification is in the class directory.

