22c:181 Spring 2006

Homework \#3 Solution

1. We begin the proof by defining the loop invariant, \mathbf{P}, used for the while loop
$\mathbf{P}=\left\{\left(0 \leq \mathrm{M} \leq \frac{N}{2}\right) \wedge\left(\mathrm{POW}=\mathrm{X}^{M}\right)\right\}$
1) $\vdash\{\mathrm{N} \geq 0\}$
$\mathrm{M}:=0$;
$\{\mathrm{N} \geq 0 \wedge \mathrm{M}=0\}$
by the Axiom of Assignment
2) $\vdash\{N \geq 0 \wedge M=0\}$

POW := 1;
$\{\mathrm{N} \geq 0 \wedge \mathrm{M}=0 \wedge \mathrm{POW}=1\}$
by the Axiom of Assignment
3a) $\{\mathrm{N} \geq 0 \wedge \mathrm{M}=0 \wedge$ POW $=1\} \Rightarrow\left\{\mathrm{N} \geq 0 \wedge \mathrm{M}=0 \wedge \mathrm{POW}=\mathrm{X}^{M}\right\}$
3b) Through Weakening, we have
$\{N \geq 0 \wedge M=0\}$
POW:=1;
$\left\{\left(0 \leq \mathrm{M} \leq \frac{N}{2}\right) \wedge\left(\mathrm{POW}=\mathrm{X}^{M}\right)\right\}$, which is \mathbf{P}
4) $\vdash\{\mathrm{N} \geq 0\}$
$\mathrm{M}:=0$;
POW := 1;
\{P\}
by the Sequential Rule on 1 and 3
We now move on to the while loop
5) $\vdash\left\{\left\{\left(0 \leq \mathrm{M} \leq \frac{N}{2}\right) \wedge\left(\mathrm{POW} \times \mathrm{X}=\mathrm{X}^{M}\right)\right\}\right.$

POW := POW $\times \mathrm{X}$
$\left\{\left(0 \leq \mathrm{M} \leq \frac{N}{2}\right) \wedge\left(\mathrm{POW}=\mathrm{X}^{M}\right)\right\}$
by the Axiom of Assignment
6) $\vdash\left\{\left(0 \leq \mathrm{M}+1 \leq \frac{N}{2}\right) \wedge\left(\mathrm{POW} \times \mathrm{X}=\mathrm{X}^{M+1}\right)\right\}$
$\mathrm{M}:=\mathrm{M}+1$;
$\left\{\left(0 \leq \mathrm{M} \leq \frac{N}{2}\right) \wedge\left(\mathrm{POW}=\mathrm{X}^{M+1}\right)\right\}$
by the Axiom of Assignment
7) $\vdash\left\{\left(0 \leq \mathrm{M}+1 \leq \frac{N}{2}\right) \wedge\left(\mathrm{POW} \times \mathrm{X}=\mathrm{X}^{M+1}\right)\right\}$
$\mathrm{M}:=\mathrm{M}+1$;
POW := POW $\times \mathrm{X}$
$\left\{\left(0 \leq \mathrm{M} \leq \frac{N}{2}\right) \wedge\left(\right.\right.$ POW $\left.\left.=\mathrm{X}^{M}\right)\right\}$
by the Sequential Rule on 5 and 6
8) $\left\{\left(0 \leq \mathrm{M}+1 \leq \frac{N}{2}\right) \wedge\left(\mathrm{POW} \times \mathrm{X}=\mathrm{X}^{M+1}\right)\right\} \Rightarrow\{\mathbf{P} \wedge(2 \times \mathrm{M}<\mathrm{N}-1)\}$ by Strengthening, so \mathbf{P} is a valid loop invariant.
9) $\vdash\{\mathbf{P}\}$
while $2 \times \mathrm{M}<\mathrm{N}-1$ do
begin
$\mathrm{M}:=\mathrm{M}+1$;
POW := POW $\times \mathrm{X}$
end;
$\{\mathbf{P} \wedge \neg(2 \times \mathrm{M}<\mathrm{N}-1)\}$
by 8 and the While Rule
10) $\vdash\{\mathrm{N} \geq 0\}$
$\mathrm{M}:=0$;
POW := 1 ;
while $2 \times \mathrm{M}<\mathrm{N}-1$ do
begin

$$
\mathrm{M}:=\mathrm{M}+1
$$

$$
\text { POW := POW } \times X
$$

end;
$\{\mathbf{P} \wedge \neg(2 \times \mathrm{M}<\mathrm{N}-1)\}$
by the Sequential Rule on 4 and 9
11) $\{\mathbf{P} \wedge \neg(2 \times \mathrm{M}<\mathrm{N}-1)\} \Rightarrow\left\{(2 \times \mathrm{M}=\mathrm{N} \vee 2 \times \mathrm{M}=\mathrm{N}-1) \wedge\left(\mathrm{POW}=\mathrm{X}^{M}\right)\right\}$
by Strengthening and logical equivalence
12a) $\vdash\left\{2 \times \mathrm{M}=\mathrm{N} \wedge \mathrm{POW} \times \mathrm{POW}=\mathrm{X}^{N}\right\}$
POW := POW*POW
$\left\{\mathrm{POW}=\mathrm{X}^{N}\right\}$
by the Axiom of Assignment
12b) $\left\{2 \times \mathrm{M}=\mathrm{N} \wedge \mathrm{POW} \times \mathrm{POW}=\mathrm{X}^{N}\right\} \Rightarrow\left\{2 \times \mathrm{M}=\mathrm{N} \wedge \mathrm{POW} \times \mathrm{POW}=\mathrm{X}^{2 M}\right\} \Rightarrow$
$\left\{2 \times \mathrm{M}=\mathrm{N} \wedge \mathrm{POW}=\mathrm{X}^{M}\right\}$
13a) $\vdash\left\{2 \times \mathrm{M} \neq \mathrm{N} \wedge \mathrm{POW} \times \mathrm{POW} \times \mathrm{X}=\mathrm{X}^{N}\right\}$
POW := POW*POW*X;
$\left\{\mathrm{POW}=\mathrm{X}^{N}\right\}$
by the Axiom of Assignment
13b) A simple check of our precondition assures us that if $2 \times \mathrm{M} \neq \mathrm{N}, 2 \times \mathrm{M}=\mathrm{N}-1$. Hence,
$\vdash\left\{2 \times \mathrm{M}=\mathrm{N}-1 \wedge \mathrm{POW} \times \mathrm{POW} \times \mathrm{X}=\mathrm{X}^{N}\right\}$
POW := POW*POW*X;
$\left\{\mathrm{POW}=\mathrm{X}^{N}\right\}$
13c) $\left\{2 \times \mathrm{M}=\mathrm{N}-1 \wedge \mathrm{POW} \times \mathrm{POW} \times \mathrm{X}=\mathrm{X}^{N}\right\} \Rightarrow\left\{2 \times \mathrm{M}=\mathrm{N}-1 \wedge \mathrm{POW} \times \mathrm{POW} \times \mathrm{X}=\mathrm{X}^{2 M+1}\right\}$
$\Rightarrow\left\{2 \times \mathrm{M}=\mathrm{N}-1 \wedge \mathrm{POW}=\mathrm{X}^{M}\right\}$
14) $\vdash\left\{(2 \times \mathrm{M}=\mathrm{N} \vee 2 \times \mathrm{M}=\mathrm{N}-1) \wedge\left(\mathrm{POW}=\mathrm{X}^{M}\right)\right\}$
if $2 * M=N$
then POW := POW*POW
else POW := POW*POW*X;
$\left\{\mathrm{POW}=\mathrm{X}^{N}\right\}$
by the Conditional Rule and logical equivalence
15) $\vdash\{\mathrm{N} \geq 0\}$
$\mathrm{M}:=0$;
POW := 1 ;
while $2 \times \mathrm{M}<\mathrm{N}-1$ do
begin
M := M+1;
POW := POW $\times \mathrm{X}$
end;
if $2 * \mathrm{M}=\mathrm{N}$

$$
\begin{gathered}
\text { then POW := POW*POW } \\
\text { else POW := POW } * \text { POW }^{*} \mathrm{X} ; \\
\left\{\mathrm{POW}=\mathrm{X}^{N}\right\} \\
\text { by the Sequential Rule on } 11 \text { and } 14
\end{gathered}
$$

2. This is a sample program, and not the only correct one
$\{\mathrm{N} \geq 8\}$
$\mathrm{Q}:=1$;
$\mathrm{P}:=1$;
while $\mathrm{P} \times 3+\mathrm{Q} \times 5<\mathrm{N}$ do
if $\mathrm{Q}>0$
then begin
$\mathrm{P}:=\mathrm{P}+2$;
$\mathrm{Q}:=\mathrm{Q}-1$
end
else begin
P:= P-3;
$\mathrm{Q}: \mathrm{Q}+2$
end
$\{\mathrm{N}=3 \times \mathrm{P}+5 \times \mathrm{Q}\}$

We will take as our while loop invariant
$\mathbf{P}=\{\mathrm{P} \times 3+\mathrm{Q} \times 5 \leq \mathrm{N}\}$

1) $\vdash\{\mathrm{N} \geq 8\}$
$\mathrm{Q}:=1$
$\{\mathrm{N} \geq 8 \wedge \mathrm{Q}=1\}$
by the Axiom of Assignment and logical equivalence
2) $\vdash\{\mathrm{N} \geq 8 \wedge \mathrm{Q}=1\}$
$\mathrm{P}:=1$;
$\{\mathrm{N} \geq 8 \wedge \mathrm{Q}=1 \wedge \mathrm{P}=1\}$
by the Axiom of Assignment and logical equivalence
3) $\vdash\{\mathrm{N} \geq 8\}$
$\mathrm{Q}:=1$;
$\mathrm{P}:=1$;
$\{\mathrm{N} \geq 8 \wedge \mathrm{Q}=1 \wedge \mathrm{P}=1\}$
by the Sequential Rule on 1 and 2
4) By logical equivalence, $\{N \geq 8 \wedge Q=1 \wedge P=1\} \Rightarrow\{P \times 3+Q \times 5 \leq N\}$
5) $\vdash\{\mathrm{P} \times 3+(\mathrm{Q}-1) \times 5 \leq \mathrm{N}\}$
$\mathrm{Q}:=\mathrm{Q}-1$
$\{\mathrm{P} \times 3+\mathrm{Q} \times 5 \leq \mathrm{N}\}$
by the Axiom of Assignment
6) $\vdash\{(\mathrm{P}+2) \times 3+(\mathrm{Q}-1) \times 5 \leq \mathrm{N}\}$
$\mathrm{P}:=\mathrm{P}+2$;
$\{\mathrm{P} \times 3+(\mathrm{Q}-1) \times 5 \leq \mathrm{N}\}$
by the Axiom of Assignment
7) $\vdash\{(\mathrm{P}+2) \times 3+(\mathrm{Q}-1) \times 5 \leq \mathrm{N}\}$
$\mathrm{P}:=\mathrm{P}+2$;
$\mathrm{Q}:=\mathrm{Q}-1$
$\{\mathrm{P} \times 3+\mathrm{Q} \times 5 \leq \mathrm{N}\}$
by the Sequential Rule on 5 and 6
8) By Strengthening and logical equivalence, $\{(\mathrm{P}+2) \times 3+(\mathrm{Q}-1) \times 5 \leq \mathrm{N}\} \Rightarrow$
$\{\mathrm{P} \times 3+\mathrm{Q} \times 5+1 \leq \mathrm{N} \wedge \mathrm{Q}>0\}$
9) $\vdash\{\mathrm{P} \times 3+(\mathrm{Q}+2) \times 5 \leq \mathrm{N}\}$
$\mathrm{Q}:=\mathrm{Q}+2$
$\{\mathrm{P} \times 3+\mathrm{Q} \times 5 \leq \mathrm{N}\}$
by the Axiom of Assignment
10) $\vdash\{(\mathrm{P}-3) \times 3+(\mathrm{Q}+2) \times 5 \leq \mathrm{N}\}$
$\mathrm{P}:=\mathrm{P}-3$;
$\{\mathrm{P} \times 3+(\mathrm{Q}+2) \times 5 \leq \mathrm{N}\}$
by the Axiom of Assignment
11) $\vdash\{(\mathrm{P}-3) \times 3+(\mathrm{Q}+2) \times 5 \leq \mathrm{N}\}$
$\mathrm{P}:=\mathrm{P}-3$;
$\mathrm{Q}:=\mathrm{Q}+2$
$\{\mathrm{P} \times 3+\mathrm{Q} \times 5 \leq \mathrm{N}\}$
by the Sequential Rule on 9 and 10
12) By Strengthening and logical equivalence, $\{(\mathrm{P}-3) \times 3+(\mathrm{Q}+2) \times 5 \leq \mathrm{N}\} \Rightarrow$ $\{\mathrm{P} \times 3+\mathrm{Q} \times 5+1 \leq \mathrm{N} \wedge \mathrm{Q} \leq 0\}$
13) $\vdash\{\mathrm{P} \times 3+\mathrm{Q} \times 5+1 \leq \mathrm{N}\}$
if $\mathrm{Q}>0$
then begin

$$
\begin{aligned}
& \mathrm{P}:=\mathrm{P}+2 \\
& \mathrm{Q}:=\mathrm{Q}-1
\end{aligned}
$$

end
else begin
P := P-3;
$\mathrm{Q}:=\mathrm{Q}+2$
end
$\{\mathrm{P} \times 3+\mathrm{Q} \times 5 \leq \mathrm{N}\}$
by the Conditional Rule on 8 and 12
14) $\{\mathrm{P} \times 3+\mathrm{Q} \times 5+1 \leq \mathrm{N}\} \Rightarrow\{\mathbf{P} \wedge \mathrm{P} \times 3+\mathrm{Q} \times 5<\mathrm{N}\}$ by logical equivalence and Strengthening, so
\mathbf{P} is a valid loop invariant.
15) $\vdash\{\mathbf{P}\}$
while $\mathrm{P} \times 3+\mathrm{Q} \times 5<\mathrm{N}$ do
if $\mathrm{Q}>0$
then begin

$$
\begin{aligned}
& \mathrm{P}:=\mathrm{P}+2 ; \\
& \mathrm{Q}:=\mathrm{Q}-1
\end{aligned}
$$

end
else begin

$$
\mathrm{P}:=\mathrm{P}-3
$$

$$
\begin{array}{r}
\mathrm{Q}:=\mathrm{Q}+2 \\
\text { end } \\
\{\mathbf{P} \wedge \neg(\mathrm{P} \times 3+\mathrm{Q} \times 5<\mathrm{N})\}
\end{array}
$$

by the While Rule
16) $\{\mathbf{P} \wedge \neg(\mathrm{P} \times 3+\mathrm{Q} \times 5<\mathrm{N})\} \Rightarrow\{\mathrm{P} \times 3+\mathrm{Q} \times 5 \leq \mathrm{N} \wedge \mathrm{P} \times 3+\mathrm{Q} \times 5 \geq \mathrm{N}\} \Rightarrow\{\mathrm{P} \times 3+\mathrm{Q} \times 5=\mathrm{N}\}$ by logical equivalence
17) $\vdash\{\mathrm{N} \geq 8\}$
$\mathrm{Q}:=1$;
$\mathrm{P}:=1$;
while $\mathrm{P} \times 3+\mathrm{Q} \times 5<\mathrm{N}$ do if $\mathrm{Q}>0$
then begin
$\mathrm{P}:=\mathrm{P}+2$;
$\mathrm{Q}:=\mathrm{Q}-1$
end
else begin
$\mathrm{P}:=\mathrm{P}-3$;
$\mathrm{Q}:=\mathrm{Q}+2$
end
$\{\mathrm{N}=3 \times \mathrm{P}+5 \times \mathrm{Q}\}$
by the Sequential Rule on 4 and 16
3a. x : the set of positive even integers
y : the set of ordered pairs (α, β) where $\alpha \in \mathrm{x}$ and β is a signed integer
z : the set of ordered pairs (α, β) where α is a boolean $(0$ or 1$)$ and β is a natural number
b. $(2,1,3) \in \mathrm{z} \times \mathrm{x}$: incorrectly typed, the first number must be a boolean and the last number must be even.
$2 \in \mathrm{z}$: incorrectly typed, z must be an ordered pair.
$\{2\} \in \mathrm{z}$: incorrectly typed, z must be an ordered pair.
$\{1,2\} \in \mathrm{z}$: incorrectly typed, $\{1,2\}$ is not an ordered pair.
$(0, x) \in \mathrm{y}$: incorrectly typed, the second element of the ordered pair cannot be a set.

