22c:181 Spring 2006
Homework \#1 Solution

1. Show by providing truth table

α	β	γ	$\alpha \vee \beta$	$\neg \alpha \vee \gamma$	$\beta \vee \gamma$	$((\alpha \vee \beta) \wedge(\neg \alpha \vee \gamma)) \Rightarrow \beta \vee \gamma$
T	T	T	T	T	T	T
T	T	F	T	F	T	T
T	F	T	T	T	T	T
T	F	F	T	F	F	T
F	T	T	T	T	T	T
F	T	F	T	T	T	T
F	F	T	F	T	T	T
F	F	F	F	T	F	T

2. Show equivalent expressions and truth tables

P	$\neg P$	P nand P	
T	F	F	
F	T	T	
P	Q	$P \wedge Q$	$(P$ nand $Q)$ nand $(P \operatorname{nand} Q)$
T	T	T	T
T	F	F	F
F	T	F	F
F	F	F	F
P	Q	$P \vee Q$	$(P$ nand $P)$ nand $(Q$ nand $Q)$
T	T	T	T
T	F	T	T
F	T	T	T
F	F	F	F

3. Show an assignment of variables which contradicts associativity, i.e. $x=T, y=T, z=F$
(T nand T) nand $\mathrm{F}=\mathrm{F}$ nand $\mathrm{F}=\mathrm{T}$
T nand $(T$ nand $F)=T$ nand $T=F$
4. The assertion is not valid. An assignment of $X=0, Y=0$ will satisfy the precondition, but not the postcondition.
