Homework XIII

1. [20 points]
This problem pertains to a module to specify a highly simplified version of the (positive and negative) integers. It closely resembles the module for natural numbers in our text (p. 449). The positive integers are obtained by repeated application of the 'succ' function to 0, and the negative integers are obtained by applications of the 'pred' function to 0.

module Integers
 exports
 sorts Integer
 operations
 0: Integer
 succ(_): Integer → Integer
 pred(_): Integer → Integer
 add: Integer, Integer → Integer
 sub: Integer, Integer → Integer
 end exports
 variables
 m, n: Integer
 equations
 add(m, 0) = m
 add(m, succ(n)) = succ(add(m, n))
 add(m, pred(n)) = pred(add(m, n))
 succ(pred(m)) = m
 pred(succ(m)) = m
 end Integers

The specification provided above is incomplete as it does not prescribe any behavior for the subtraction function 'sub'. Provide suitable equations for the 'sub' function, and justify that your equations permit the usual conclusions about integer arithmetic (e.g., m-m=0).

2. [30 points]
This problem pertains to the module 'Lists' on page 453 of our text. Add the specification of two functions with the signatures

 drop: Natural, List → List, and
 front: List → List.

The informal description of the 'drop' function is that drop(N,L) consists of the list L with the first N items removed. For instance, drop(succ(1), cons(0, cons(1, cons(1, mkList(0))))) = cons(1, mkList(0)).

The informal description of the 'front' function is that front(L) consists of the list L with its last item omitted. For instance, front(cons(0, cons(1, cons(1, mkList(0))))) = cons(0, cons(1, mkList(1))).

Provide equations to specify these two functions, and justify that your specification accomplishes the informally stated behavior, including when the lists are “too short”.

3. [15 points]

An abridged version of the Stack of Nat ADT with sorts Stack and Nat is given as follows:

<table>
<thead>
<tr>
<th>Signature</th>
<th>Equations (for all (x, y \in \text{Nat}) and (z \in \text{Stack}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: Nat</td>
<td>(\text{sum}(0, y) = y)</td>
</tr>
<tr>
<td>(s: \text{Nat} \to \text{Nat})</td>
<td>(\text{sum}(s(x), y) = s(\text{sum}(x, y)))</td>
</tr>
<tr>
<td>(\text{empty}: \text{Stack})</td>
<td></td>
</tr>
<tr>
<td>(\text{push}: \text{Stack}, \text{Nat} \to \text{Stack})</td>
<td>(\text{pop}(\text{push}(z, x)) = z)</td>
</tr>
<tr>
<td>(\text{top}: \text{Stack} \to \text{Nat})</td>
<td>(\text{top}(\text{push}(z, x)) = x)</td>
</tr>
</tbody>
</table>

Give a context-free grammar (BNF) whose derivation trees are (when viewed as terms) precisely the set of well-formed ground terms of this ADT, and justify it.