Homework II

1. [20 points]
Provide the (partial) correctness proof of the program fragment below using the proof rules in chapter 14 of Diller.

\[
\begin{align*}
\{ \text{INCH} \geq 0 \} \\
\text{FOOT} &:= \text{INCH} \times 12; \\
\text{YARD} &:= \text{FOOT} \times 3; \\
\text{MILE} &:= \text{YARD} \times 1760 \\
\{ \text{INCH} \geq 0 \} \land \text{FOOT} = \text{INCH} \times 12 \land \text{YARD} = \text{INCH} \times 36 \land \text{MILE} = \text{INCH} \times 63360
\end{align*}
\]

2. [20 points]
Provide the (partial) correctness proof of the program fragment below for absolute value using the proof rules in chapter 14 of Diller.

\[
\begin{align*}
\{ \text{true} \} \\
\text{B} &:= \text{A}; \\
\text{if } \text{A} < 0 \text{ then } \text{B} &:= -\text{B} \text{ else } \text{skip} \\
\{ \text{A} \geq 0 \land \text{B} = \text{A} \} \land \{ \text{A} < 0 \land \text{B} = -\text{A} \}
\end{align*}
\]

3. [30 points]
Write a program fragment in Diller's language to compute the minimum \(M \) of the four Integer variables \(A, B, C, \) and \(D \), and prove its partial correctness using the proof rules in chapter 14. The pre-condition is \textbf{true}, and the post-condition is

\[
\begin{align*}
\{ M = \text{A} \land M = \text{B} \land M = \text{C} \land M = \text{D} \} \land \text{M} \leq \text{A} \land \text{M} \leq \text{B} \land \text{M} \leq \text{C} \land \text{M} \leq \text{D}
\end{align*}
\]

Of course, your program should not change \(A, B, C, \) or \(D \).