Homework I

1. [10 points]
 Show that for any wffs a, b and g, the propositional formula $(\neg b \lor \neg g) \lor \neg \neg \neg a \lor \neg g$ is a tautology.

2. [15 points]
 Provide an expression utilizing only the 'nand' operation (negated 'and', see truth table definition below) that is logically equivalent to each of the three usual Boolean operations \lor, \land, and \neg.

 \[
 \begin{array}{c|c|c}
 P & Q & P \text{ nand } Q \\
 \hline
 T & T & F \\
 T & F & T \\
 F & T & T \\
 F & F & T \\
 \end{array}
 \]

3. [10 points]
 Show that $(x \text{ nand } y) \text{ nand } z$ is not logically equivalent to $x \text{ nand } (y \text{ nand } z)$ (i.e., nand is not associative).

4. [10 points]
 Determine if the program assertion (see Chapter 14 of Diller) below is valid and justify your answer. Assume that the domain of the program variables is integers.
 \[
 \{\text{true}\} \text{ if } X>Y \text{ then skip else } X:= X\times\times Y \{X>Y\}
 \]