Homework I

1. [10 points]

Show that for any wffs α , β and γ , the propositional formula $((\alpha \lor \beta) \land (\neg \alpha \lor \gamma)) \Rightarrow \beta \lor \gamma$ is a tautology.

2. [15 points]

Provide an expression utilizing *only* the '**nand**' operation (negated 'and', see truth table definition below) that is logically equivalent to each of the three usual Boolean operations \neg , \land , and \lor .

Ρ	Q	P nand Q
Т	Т	F
Т	F	Т
F	Т	Т
F	F	Т

3. [10 points]

Show that (x nand y) nand z is not logically equivalent to x nand (y nand z) (i.e., nand is not associative).

4. [10 points]

Determine if the program assertion (see Chapter 14 of Diller) below is valid and justify your answer. Assume that the domain of the program variables is integers.

{true} if X>Y then skip else X:= X*X*Y {X>Y}